K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2021

chị ơi em muốn nói cái này

có nhiều ng mới hok lớp 2,3,4,5,6,7,8,9 lắm nên chỉ đừng xưng em ạ

em mới chỉ hok lớp 6

em chúc chị HT

16 tháng 6 2020

pleashhhhhhhhhhhh

16 tháng 6 2020

Đề bài là gì vậy ạ?

4 tháng 4 2020

j giúp j ????

4 tháng 4 2020

giải giúp với ae

Người ae

ở đây ko tải đc ảnh nhé!

học tốt

a: f(x)=0

=>(x-3)(x+3)=0

=>x=3 hoặc x=-3

b: f(x)=0

=>(-2x+4)(2x^2+1)=0

=>4-2x=0

=>x=2

22 tháng 2 2017

a)\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow a+b\ge2\sqrt{ab}\)

\(\Rightarrow a^2+2ab+b^2\ge4ab\)

\(\Rightarrow a^2-2ab+b^2\ge0\Rightarrow\left(a-b\right)^2\ge0\)

Dấu "=" xảy ra khi \(a=b\)

b)Áp dụng BĐT AM-GM ta có:

\(\left\{\begin{matrix}\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\\\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ab}{c}}=2b\\\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\end{matrix}\right.\)

Cộng từng vế của 3 BĐT trên rồi thu gọn ta được điều cần chứng minh

Dấu "=" xảy ra khi \(a=b=c\)

c)Áp dụng BĐT AM-GM ta có:

\(\frac{3a+5b}{2}\ge\sqrt{3a\cdot5b}\Leftrightarrow\left(3a+5b\right)^2\ge4\cdot15P\)

\(\Leftrightarrow12^2\ge60P\Leftrightarrow P\le\frac{12}{5}\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix}a=2\\b=\frac{6}{5}\end{matrix}\right.\)

24 tháng 2 2017

cảm ơn nha ! vui

13 tháng 4 2016

 = 100√3 và  ngược hướng với hướng  với E là đỉnh thứ tư của hình bình hành MACB

NV
21 tháng 1 2024

8.

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+2x+3}=a>0\\\sqrt{x^2+4x+5}=b>0\end{matrix}\right.\) \(\Rightarrow2a^2-b^2=x^2+1\)

Pt trở thành:

\(\sqrt{2a^2-b^2}+2a=3b\)

\(\Leftrightarrow\sqrt{2a^2-b^2}=3b-2a\)

\(\Rightarrow2a^2-b^2=4a^2-12ab+9b^2\)

\(\Leftrightarrow2a^2-12ab+10b^2=0\Rightarrow\left[{}\begin{matrix}a=b\\a=5b\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+2x+3}=\sqrt{x^2+4x+5}\\\sqrt{x^2+2x+3}=5\sqrt{x^2+4x+5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+3=x^2+4x+5\\x^2+2x+3=25\left(x^2+4x+5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\24x^2+98x+122=0\left(vn\right)\end{matrix}\right.\)

NV
21 tháng 1 2024

9.

ĐKXĐ: \(-1\le x\le1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{1+x}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2+2b^2=3-x=-\left(x-3\right)\)

Pt trở thành:

\(a-2b-3ab=-\left(a^2+2b^2\right)\)

\(\Leftrightarrow a-2b+a^2-3ab+2b^2=0\)

\(\Leftrightarrow a-2b+\left(a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow\left(a-2b\right)\left(a-b+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\a+1=b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}=2\sqrt{1-x}\\\sqrt{1+x}+1=\sqrt{1-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}1+x=4\left(1-x\right)\\x+2+2\sqrt{1+x}=1-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=3\Rightarrow x=\dfrac{3}{5}\\-1-2x=2\sqrt{1+x}\left(1\right)\end{matrix}\right.\)

Xét (1) \(\Leftrightarrow\left\{{}\begin{matrix}-1-2x\ge0\\\left(-1-2x\right)^2=4\left(1+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le-\dfrac{1}{2}\\x^2=\dfrac{3}{4}\end{matrix}\right.\) \(\Rightarrow x=-\dfrac{\sqrt{3}}{2}\)

Vậy \(x=\left\{\dfrac{3}{5};-\dfrac{\sqrt{3}}{2}\right\}\)

30 tháng 10 2017

Hoành độ đỉnh: \(\dfrac{-b}{2a}=-\dfrac{-2}{2}=1\)

a > 0 nên đồ thị hướng lên

Vậy HS đồng biến trong khoảng (1;+\(\infty\)) -> Chọn A

28 tháng 10 2019

Đề đâu???

28 tháng 10 2019

Đề nào cơ