K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2017

a. để đồ thị đi qua điểm A(-3;15) <=> 15=(3-a).(-3)+a => a=6

vậy a=6 thì đồ thị hàm số đã cho đi qua điểm A(-3;5)

20 tháng 11 2016

a/ Hai hàm số có đồ thị // với nhau khi

\(\hept{\begin{cases}m-2=1\\3\ne0\end{cases}}\Leftrightarrow m=3\)

b/ Tọa độ giao điểm 2 đường thẳng là nghiệm của hệ

\(\hept{\begin{cases}y=x+3\\y=2x+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}\)

c/ Gọi điểm mà đường thẳng luôn đi qua là M(a,b) ta thế vào hàm số được

\(b=ma+3\)

\(\Leftrightarrow ma+3-b=0\)

Để phương trình này không phụ thuôc m thì

\(\hept{\begin{cases}a=0\\3-b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=3\end{cases}}\)

Tọa độ điểm cần tìm là M(0, 3)

20 tháng 11 2016

d/ Ta có khoản cách từ O(0,0) tới (d) là 1

\(\Rightarrow=\frac{\left|0-0m-3\right|}{\sqrt{1^2+m^2}}=\frac{3}{\sqrt{1+m^2}}=1\)

\(\Leftrightarrow\sqrt{1+m^2}=3\)

\(\Leftrightarrow m^2=8\)

\(\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}\\m=-2\sqrt{2}\end{cases}}\)

Bài 1: Cho hàm số y=[ m-2]x + 3a. Tìm m để đồ thị [d] của hàm số song song với đường thẳng y=x - 2Vẽ [d] trong trường hợp này và tính góc tạo bởi [d] với trục hoànhb. Tìm m để đồ thị [d] của hàm số đồng qui với hai đường thẳng y= -2x + 1 và y= -x + 4Bài 2 : Trên mặt phẳng tọa độ cho ba điểm A[2;3], B[-1;-3] và C[0;1]a] Tìm hệ số góc của đường thẳng ABb] Chứng tỏ rằng ba điểm A,B,C thẳng...
Đọc tiếp

Bài 1: Cho hàm số y=[ m-2]x + 3

a. Tìm m để đồ thị [d] của hàm số song song với đường thẳng y=x - 2

Vẽ [d] trong trường hợp này và tính góc tạo bởi [d] với trục hoành

b. Tìm m để đồ thị [d] của hàm số đồng qui với hai đường thẳng y= -2x + 1 và y= -x + 4

Bài 2 : Trên mặt phẳng tọa độ cho ba điểm A[2;3], B[-1;-3] và C[0;1]

a] Tìm hệ số góc của đường thẳng AB

b] Chứng tỏ rằng ba điểm A,B,C thẳng hàng 

Bài 3: Cho hàm số y= mx- 2m - 1

a] Định m để đồ thị hàm số đi qua gốc tạo độ O \

b] Gọi A,B lần lượt là giao điểm của đồ thị hàm số với các trục Ox, Oy. Định m để diện tích tam giác OAB bằng [ đvdt]

c] Chứng minh rằng với mọi giá trị của m thì đồ thị của hàm số đã cho luôn đi qua một điểm cố định 

0

c: y=(m-1)x+4

=>\(\left(m-1\right)x-y+4=0\)

Khoảng cách từ O(0;0) đến (d) là:

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-1\right)+0\cdot\left(-1\right)+4\right|}{\sqrt{\left(m-1\right)^2+\left(-1\right)^2}}=\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}\)

Để \(d\left(O;\left(d\right)\right)=2\) thì \(\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}=2\)

=>\(\sqrt{\left(m-1\right)^2+1}=2\)

=>\(\left(m-1\right)^2+1=4\)

=>\(\left(m-1\right)^2=3\)

=>\(m-1=\pm\sqrt{3}\)

=>\(m=\pm\sqrt{3}+1\)

15 tháng 4 2019

ai giải bài này giùm với