Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\int_2^5\dfrac{x}{(x-1)(x+2)}dx=\dfrac{1}{3}\int_2^5\dfrac{3x}{(x-1)(x+2)}dx\)
\(=\dfrac{1}{3}\int_2^5[\dfrac{1}{(x-1)}+\dfrac{2}{(x+2)}]dx\)
\(=\dfrac{1}{3}\int_2^5\dfrac{1}{(x-1)}dx+\dfrac{2}{3}\int_2^5\dfrac{1}{(x+2)}dx\)
\(=\dfrac{1}{3}.\ln(x-1)|_2^5+\dfrac{2}{3}.\ln(x+2)|_2^5\)
\(=...\)
Ba anh ấy đẹp trai quá!!!!!!!! Love love <3!!!!!!!!
lật ngược sao mà giải đây !! bạn chịu khó ghi từng câu ra đi
Ta có:
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...\frac{1}{50.51}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}...-\frac{1}{50}+\frac{1}{50}-\frac{1}{51}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2}-\frac{1}{51}\)
Vì \(\frac{1}{2}-\frac{1}{51}<1\)
nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<1\)
\(y<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{48\cdot49}+\frac{1}{49\cdot50}\)
\(y<1-\frac{49}{50}<1\)
=> y < 1
chả nhìn thấy gì
1) Khi m=3 thì hpt trở thành:
\(\begin{cases}x+3y=9\\3x-y=7\end{cases}\Leftrightarrow\begin{cases}x+3y=9\\9x-3y=21\end{cases}\Leftrightarrow\begin{cases}10x=30\\x+3y=9\end{cases}\Leftrightarrow\begin{cases}x=3\\y=2\end{cases}\)
Vậy hpt có 1 nghiệm duy nhất là (3;2)
2)