Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt (1) <=>\(x=2+my-4m\) thay vào pt (2) có:
\(\left(2+my-4m\right)m+y=3m+1\)
<=>\(y\left(m^2+1\right)=m+4m^2+1\) (3)
Để hpt có nghiệm <=> pt (3) có nghiệm
<=> \(m^2+1\ne0\) (luôn đúng với mọi m)
=> pt (3) có nghiệm duy nhất => hpt có nghiệm duy nhất với mọi m.
Do x0,y0 là 1 nghiệm của hệ => \(\left\{{}\begin{matrix}x_0-my_0=2-4m\\my_0+y_0=3m+1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x_0-2=m\left(y_0-4\right)\\y_0-1=m\left(3-x_0\right)\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}\left(x_0-2\right)\left(3-x_0\right)=m\left(3-x_0\right)\left(y_0-4\right)\\\left(y_0-1\right)\left(y_0-4\right)=m\left(3-x_0\right)\left(y_0-4\right)\end{matrix}\right.\)
=>\(\left(x_0-2\right)\left(3-x_0\right)=\left(y_0-1\right)\left(y_0-4\right)\)
<=>\(5x_0-x_0^2-6=y_0^2-5y_0+4\)
<=>\(x^2_0+y^2_0-5\left(y_0+x_0\right)+10=0\)
Từ pt 1, rút x=3y+3 ra rồi thay vào pt dưới
giải pt bậc 2 là ra nghiệm, từ đó thay vào tính M
????????
cho hệ phương trình
các anh các chị nói gì nhợ
thêm lãi ý hả
trời nhưng chưa kinh bằng em đâu
\(\left\{{}\begin{matrix}x+y=3m\\x-2y=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=m+1\\x=2m-1\end{matrix}\right.\)
\(x^2+xy=30\)
\(\Leftrightarrow\left(2m-1\right)^2+\left(2m-1\right)\left(m+1\right)-30=0\)
\(\Leftrightarrow6m^2-3m-30=0\Rightarrow\left[{}\begin{matrix}m=-2\\m=\frac{5}{2}\end{matrix}\right.\)
Bài 2:
\(a+b+c=1-m+m-1=0\Rightarrow\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\)
a/ TH1: \(x_1=2x_2\Rightarrow1=2\left(m-1\right)\Rightarrow m=\frac{3}{2}\)
Th2: \(x_2=2x_1\Rightarrow m-1=2\Rightarrow m=3\)
b/ \(A=x_1^2+x_2^2-6x_1x_2\)
\(A=1+\left(m-1\right)^2-6\left(m-1\right)=8\)
\(\Rightarrow\left(m-1\right)^2-6\left(m-1\right)-7=0\)
\(\Rightarrow\left[{}\begin{matrix}m-1=-1\\m-1=7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=0\\m=8\end{matrix}\right.\)
\(A=\left(m-1\right)^2-6\left(m-1\right)+1=\left(m-1\right)^2-6\left(m-1\right)+9-8\)
\(A=\left(m-1-3\right)^2-8=\left(m-4\right)^2-8\ge-8\)
\(\Rightarrow A_{min}=-8\) khi \(m=4\)
Bài 2: Để hpt có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{3}{-2}\Leftrightarrow\)\(m\ne\dfrac{-3}{2}\)
Bài 1: \(\left\{{}\begin{matrix}mx+y=5\left(1\right)\\2x-y=-2\left(2\right)\end{matrix}\right.\)
Lấy (1) cộng (2), ta được: \(\left(m+2\right)x=3\Rightarrow x=\dfrac{3}{m+2}\)
Thay vào (2): \(\dfrac{6}{m+2}-y=-2\)\(\Rightarrow y=\dfrac{6+2m+4}{m+2}=\dfrac{2m+10}{m+2}\)
x0+y0=1\(\Rightarrow\dfrac{3}{m+2}+\dfrac{2m+10}{m+2}=\dfrac{2m+13}{m+2}=1\)(ĐK: \(m\ne-2\))
\(\Rightarrow2m+13=m+2\Leftrightarrow m=-11\left(TM\right)\)
Bài 3: Thay \(x=\sqrt{2};y=4-\sqrt{2}\) vào đths y=ax+b:
\(\sqrt{2}a+b=4-\sqrt{2}\left(1\right)\)
Thay x=2; \(y=\sqrt{2}\) vào đths y=ax+b:
\(2a+b=\sqrt{2}\left(2\right)\)
Từ (1) và (2), ta có hpt: \(\left\{{}\begin{matrix}\sqrt{2}a+b=4-\sqrt{2}\\2a+b=\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=\sqrt{2}+4\end{matrix}\right.\)
Vậy đths \(y=-2x+4+\sqrt{2}\) đi qua điểm \(\left(\sqrt{2};4-\sqrt{2}\right)\) và \(\left(2;\sqrt{2}\right).\)