Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a, \(2\sqrt{45}+\sqrt{5}-3\sqrt{80}\)
\(=2\sqrt{3^2.5}+\sqrt{5}-3\sqrt{4^2.5}\)
\(=2.3\sqrt{5}+\sqrt{5}-3.4\sqrt{5}\)
\(=6\sqrt{5}+\sqrt{5}-12\sqrt{5}=-5\sqrt{5}\)
c, \(\left(\frac{3-\sqrt{3}}{\sqrt{3}-1}-\frac{2-\sqrt{2}}{1-\sqrt{2}}\right):\frac{1}{\sqrt{3}+\sqrt{2}}\)
\(=\left[\frac{\left(3-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}-\frac{\left(2-\sqrt{2}\right)\left(1+\sqrt{2}\right)}{1-2}\right].\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\left(\frac{3\sqrt{3}+3-3-\sqrt{3}}{2}-\frac{2+2\sqrt{2}-\sqrt{2}-2}{-1}\right).\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\left(\frac{2\sqrt{3}}{2}+\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\frac{2\sqrt{3}+2\sqrt{2}}{2}.\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\frac{\left(2\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{2}=\frac{6+2\sqrt{6}+2\sqrt{6}+4}{2}=\frac{10+4\sqrt{6}}{2}=5+2\sqrt{6}\)
Bài 2a
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH^2=BH.CH\Rightarrow CH=\frac{AH^2}{BH}=\frac{256}{25}\)cm
-> BC = HB + CH = \(25+\frac{256}{25}=\frac{881}{25}\)cm
Áp dụng định lí Pytago của tam giác ABH vuông tại H
\(AB=\sqrt{AH^2+HB^2}=\sqrt{881}\)cm
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=18,9...\)cm
Bài 2c
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức :
\(AH^2=HB.HC=3.4=12\Rightarrow AH=2\sqrt{3}\)cm
Theo định lí Pytago tam giác AHB vuông tại H
\(AB=\sqrt{AH^2+HB^2}=\sqrt{21}\)cm
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{12}=\frac{1}{21}+\frac{1}{AC^2}\Rightarrow AC=2\sqrt{7}\)cm
Bài 1:
a)
\(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\) ĐKXĐ: x >1
\(=\left(\dfrac{2\sqrt{x}.\sqrt{x}}{2.2\sqrt{x}}-\dfrac{2}{2.2\sqrt{x}}\right)\left(\dfrac{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)^2}-\dfrac{\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{2x-2}{4\sqrt{x}}\right)\left(\dfrac{x\sqrt{x}-x-x+\sqrt{x}-x\sqrt{x}-x-x-\sqrt{x}}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{-4x}{\left(x-1\right)^2}\right)\\ =\dfrac{\left(x-1\right).\left(-4x\right)}{2\sqrt{x}.\left(x-1\right)^2}=\dfrac{-2\sqrt{x}}{x-1}\)
b)
Với x >1, ta có:
A > -6 \(\Leftrightarrow\dfrac{-2\sqrt{x}}{x-1}>-6\Rightarrow-2\sqrt{x}>-6\left(x-1\right)\)
\(\Leftrightarrow-2\sqrt{x}+6x-6>0\\ \Leftrightarrow x-\dfrac{2}{6}\sqrt{x}-1>0\\ \Leftrightarrow x-2.\dfrac{1}{6}\sqrt{x}+\left(\dfrac{1}{6}\right)^2>1+\dfrac{1}{36}\\ \Leftrightarrow\left(\sqrt{x}-\dfrac{1}{6}\right)^2>\dfrac{37}{36}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{6}-\sqrt{x}>\dfrac{\sqrt{37}}{6}\\\sqrt{x}-\dfrac{1}{6}>\dfrac{\sqrt{37}}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-\sqrt{x}>\dfrac{\sqrt{37}-1}{6}\\\sqrt{x}>\dfrac{\sqrt{37}+1}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-x>\dfrac{19-\sqrt{37}}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{\sqrt{37}-19}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\)
Vậy không có x để A >-6
dạng này dễ mà bạn
bạn tìm ĐK, đối chiếu giá trị với ĐK thấy thỏa mãn rồi thay vô
toàn SCP nên tính cũng đơn giản:)
1) Thay x = 64 (TMĐK ) vào A, có :
A = \(\frac{\sqrt{64}}{\sqrt{64}-2}\)=\(\frac{4}{3}\)
Vậy A = \(\frac{4}{3}\)khi x = 64
2) Thay x = 36 ( TMĐK ) vào A, có
A =\(\frac{\sqrt{36}+4}{\sqrt{36}+2}\)=\(\frac{5}{4}\)
Vậy A =\(\frac{5}{4}\)khi x = 36
3) Thay x=9 (TMĐK ) vào A, có :
A= \(\frac{\sqrt{9}-5}{\sqrt{9}+5}\)= \(\frac{-1}{4}\)
Vậy A=\(\frac{-1}{4}\)khi x = 9
4) Thay x = 25( TMĐK ) vào A có:
A =\(\frac{2+\sqrt{25}}{\sqrt{25}}\)=\(\frac{7}{5}\)
Vậy A=\(\frac{7}{5}\) khi x = 25
P1 = (\(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\)) : \(\frac{\sqrt{x}}{x+\sqrt{x}}\)= \(\frac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\):\(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)=\(\frac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\).
(\(\sqrt{x}+1\)) =\(\frac{x+\sqrt{x}+1}{\sqrt{x}}\)(ĐKXĐ : x > 0 )
P2 =\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)=\(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)= \(\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)= \(\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)=\(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)=\(\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
(ĐKXĐ: x\(\ge\)0, x\(\ne\)1)
Bài 2 :
a ) \(\sqrt{4x-8}+\sqrt{x-2}=4+\dfrac{1}{3}\sqrt{9x-18}\) ( ĐKXĐ : \(x\ge2\) )
\(\Leftrightarrow2\sqrt{x-2}+\sqrt{x-2}=4+\dfrac{1}{3}.3\sqrt{x-2}\)
\(\Leftrightarrow3\sqrt{x-2}-\sqrt{x-2}=4\)
\(\Leftrightarrow2\sqrt{x-2}=4\)
\(\Leftrightarrow\sqrt{x-2}=2\)
\(\Leftrightarrow x-2=4\)
\(\Leftrightarrow x=2\) ( thỏa mãn ĐKXĐ )
Vậy phương trình có nghiệm x = 2 .
Bài 2 :
b ) \(\sqrt{x^2-6x+9}-\dfrac{\sqrt{6}+\sqrt{3}}{\sqrt{2}+1}=0\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}-\dfrac{\sqrt{3}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=0\)
\(\Leftrightarrow|x-3|-\sqrt{3}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3-\sqrt{3}=0\left(x\ge3\right)\\3-x-\sqrt{3}=0\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{matrix}\right.\)
Vậy phương trình cón nghiệm \(x=3+\sqrt{3}\) hoặc \(x=3-\sqrt{3}\) .
b) Ta có: \(\left\{{}\begin{matrix}x-y\sqrt{2}=6\\2\sqrt{2}x-3y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-3\sqrt{2}\cdot y=18\\4x-3\sqrt{2}\cdot y=8\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x=18-8\sqrt{2}\\x-y\sqrt{2}=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8\sqrt{2}-18\\y\sqrt{2}=x-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\sqrt{2}-18\\y\sqrt{2}=8\sqrt{2}-18-6=8\sqrt{2}-24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8\sqrt{2}-18\\y=8-12\sqrt{2}\end{matrix}\right.\)
Vậy: hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=8\sqrt{2}-18\\y=8-12\sqrt{2}\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}3x+2y=3\\5x+3y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15x+10y=15\\15x+9y=30\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-15\\3x+2y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=3-2y=3-2\cdot\left(-15\right)=33\\y=-15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=-15\end{matrix}\right.\)
Vậy: hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=11\\y=-15\end{matrix}\right.\)
d) Ta có: \(\left\{{}\begin{matrix}x-3y=23\\4x+5y=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x-12y=92\\4x+5y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-17y=85\\x-3y=23\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-5\\x=23+3y=23+3\cdot\left(-5\right)=8\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(8;-5)