K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

điều kiện \(cosx\ne0\Leftrightarrow cosx\ne90\Leftrightarrow\left\{{}\begin{matrix}x\ne90+k2\pi\\x\ne-90+k2\pi\end{matrix}\right.\) \(\left(k\in Z\right)\)

đặc \(tanx=t\) \(\Rightarrow t^2-\left(1+\sqrt{3}\right)t+\sqrt{3}=0\)

ta có : \(a+b+c=1-\left(1+\sqrt{3}\right)+\sqrt{3}=0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt \(\left\{{}\begin{matrix}t=1\\t=\sqrt{3}\end{matrix}\right.\)

với \(t=1\Leftrightarrow tanx=1\) \(\Leftrightarrow tanx=45\Leftrightarrow x=45+k\pi\left(tmđk\right)\)

với \(t=\sqrt{3}\Leftrightarrow tanx=\sqrt{3}\) \(\Leftrightarrow tanx=60\Leftrightarrow x=60+k\pi\left(tmđk\right)\)

(trong đó \(k\in Z\) )

vậy ...............................................................................................................

1 tháng 8 2018

Dạ em cảm ơn nhiều ạ

NV
13 tháng 7 2020

10. ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)

\(2cos2x+tanx=\frac{4}{5}\)

\(\Leftrightarrow4cos^2x-2+tanx=\frac{4}{5}\)

\(\Leftrightarrow\frac{4}{1+tan^2x}+tanx-\frac{14}{5}=0\)

Đặt \(tanx=t\)

\(\Rightarrow\frac{20}{1+t^2}+5t-14=0\)

\(\Leftrightarrow5t^3-14t^2+5t+6=0\)

\(\Leftrightarrow\left(t-2\right)\left(5t^2-4t-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{2+\sqrt{19}}{5}\\t=\frac{2-\sqrt{19}}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=2=tana\\tanx=\frac{2+\sqrt{19}}{5}=tanb\\tanx=\frac{2-\sqrt{19}}{5}=tanc\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=a+k\pi\\x=b+k\pi\\x=c+k\pi\end{matrix}\right.\)

NV
13 tháng 7 2020

9.

\(\Leftrightarrow cos2x-3cosx=2\left(cosx+1\right)\)

\(\Leftrightarrow2cos^2x-1-3cosx=2cosx+2\)

\(\Leftrightarrow2cos^2x-5cosx-3=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=3\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{2\pi}{3}+k2\pi\)

14 tháng 9 2021

a) TH1: sinx = 1 

--> x = pi/2 + k2pi (k nguyên)

TH2: sinx = -3 (loại)

14 tháng 9 2021

b) 2cosx + cos2x = 0

<=> 2cosx + 2cos^2(x) - 1 = 0

TH1: cosx = (-1 + sqrt(3))/2

TH2: cosx = (-1 - sqrt(3))/2 (loại)