Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm đường tròn \(\Rightarrow\) O là trung điểm BC
\(\stackrel\frown{BE}=\stackrel\frown{ED}=\stackrel\frown{DC}\Rightarrow\widehat{BOE}=\widehat{EOD}=\widehat{DOC}=\dfrac{180^0}{3}=60^0\)
Mà \(OD=OE=R\Rightarrow\Delta ODE\) đều
\(\Rightarrow ED=R\)
\(BN=NM=MC=\dfrac{2R}{3}\Rightarrow\dfrac{NM}{ED}=\dfrac{2}{3}\)
\(\stackrel\frown{BE}=\stackrel\frown{DC}\Rightarrow ED||BC\)
Áp dụng định lý talet:
\(\dfrac{AN}{AE}=\dfrac{MN}{ED}=\dfrac{2}{3}\Rightarrow\dfrac{EN}{AN}=\dfrac{1}{2}\)
\(\dfrac{ON}{BN}=\dfrac{OB-BN}{BN}=\dfrac{R-\dfrac{2R}{3}}{\dfrac{2R}{3}}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{EN}{AN}=\dfrac{ON}{BN}=\dfrac{1}{2}\) và \(\widehat{ENO}=\widehat{ANB}\) (đối đỉnh)
\(\Rightarrow\Delta ENO\sim ANB\left(c.g.c\right)\)
\(\Rightarrow\widehat{NBA}=\widehat{NOE}=60^0\)
Hoàn toàn tương tự, ta có \(\Delta MDO\sim\Delta MAC\Rightarrow\widehat{MCA}=\widehat{MOD}=60^0\)
\(\Rightarrow\Delta ABC\) đều
Bài 2:
a, Do tam giác MNP cân tại M nên MN=MP
\(\Rightarrow\dfrac{1}{2}MN=\dfrac{1}{2}MP\Rightarrow MO=ON=MO'=O'P\)
\(\Rightarrow MO=OD=DO'=O'M\) (OD và O'D là các bán kính của (O) và (O'))
Do đó MODO' là hthoi
\(\Rightarrow\widehat{OMO'}=\widehat{ODO'}\)
Lại có \(ON=OD\Rightarrow\widehat{OND}=\widehat{ODN};DO'=O'P\Rightarrow\widehat{O'DP}=\widehat{O'PD}\)
\(\Rightarrow\widehat{NDP}=\widehat{NDO}+\widehat{ODO'}+\widehat{O'DP}=\widehat{OND}+\widehat{O'PD}+\widehat{OMO'}=180^0\)
Vậy \(\widehat{NDP}\) là góc bẹt hay N,D,P thẳng hàng
b, Vì \(\left\{{}\begin{matrix}MO=ON\\MO'=O'P\end{matrix}\right.\) nên OO' là đtb tg MNP
Do đó OO'//NP
Mà OO'⊥MD (hthoi MODO')
Suy ra NP⊥MD
Mà tam giác MNP cân tại M nên MD cũng là trung tuyến
\(\Rightarrow ND=DP\\ \Rightarrow\stackrel\frown{DN}=\stackrel\frown{DP}\)
c, Vì O'D là đtb tg MNP nên O'D//OE hay OO'DE là hình thang
Mà OD=O'E (do là bán kính 2 đg tròn (O) và (O')) nên OO'DE là htc
Do đó OO'DE nội tiếp
\(\Rightarrow\widehat{O'OD}=\widehat{O'ED}\) (cùng chắn O'D)
Mà tam giác OO'D và O'ED cân tại D và O' nên \(\widehat{EO'D}=\widehat{ODO'}\left(180^0-2\widehat{O'OD}=180^0-2\widehat{O'ED}\right)\)
Mà \(\widehat{OMO'}=\widehat{ODO'}\Rightarrow\widehat{OMO'}=\widehat{EO'D}\)
Mà \(\widehat{OMO'}=\widehat{DO'P}\) (đồng vị) \(\Rightarrow\widehat{DO'P}=\widehat{EO'D}\)
\(\Rightarrow\stackrel\frown{ED}=\stackrel\frown{DP}\) hay ta đc đpcm
Em cám ơn Anh/Chị ạ