Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Gọi I là điểm chính giữa cung AB => IA = IB
Trên tia đối tia IB và tia MB lấy điểm Q và N sao cho: QI = IB và NM = MA
Ta có: \(\Delta\)AMN vuông cân tại M
=> ^ANB = ^ANM = 45 độ (1)
\(\Delta\)ABQ có AI = IB = IQ
=> \(\Delta\)ABQ vuông cân tại A
=> ^AQB = 45 độ (2)
Từ (1); (2) => ^AQB = ^ANB
=> ANQB nội tiếp
=> ^QNB = ^QAB = 90 độ
=> \(\Delta\)BNQ vuông cân tại N
=> \(MA+MB=MN+MB=NB\le BQ=IB+IQ=IB+IA\)không đổi
=> \(\frac{1}{MA}+\frac{1}{MB}\ge\frac{4}{MA+MB}\ge\frac{4}{IA+IB}\)
Dấu "=" xảy ra <=> MA = MB; MA + MB = IA + IB mà IA = IB => M trùng I hay M nằm giữa cung AB

a, HS tự chứng minh
b, Chứng minh ∆NMC:∆NDA và ∆NME:∆NHA
c, Chứng minh ∆ANB có E là trực tâm => AE ⊥ BN mà có AK ⊥ BN nên có ĐPCM
Chứng minh tứ giác EKBH nội tiếp, từ đó có A K F ^ = A B M ^
d, Lấy P và G lần lượt là trung điểm của AC và OP
Chứng minh I thuộc đường tròn (G, GA)