Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}-3\sqrt{x-1}+3=0\)\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x-1}-1\right)-3\left(\sqrt{x-1}-1\right)=0\)\(\Leftrightarrow\left(\sqrt{x-2}-3\right)\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\sqrt{x-2}-3=0va\sqrt{x-1}-1=0\)\(\Leftrightarrow x=9vax=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1: Ta có: \(3\sqrt{12}=\sqrt{9}.\sqrt{12}=\sqrt{108}\)
và \(2\sqrt{26}=\sqrt{4}.\sqrt{26}=\sqrt{104}\)
Vì \(108>104\Rightarrow\sqrt{108}>\sqrt{104}\)
Hay \(3\sqrt{12}>2\sqrt{26}\)
Bài 2:
\(\frac{5}{4}\sqrt{12x}-\sqrt{12x}-3=\frac{1}{6}\sqrt{12x}\)
\(\Leftrightarrow\frac{5}{4}\sqrt{12x}-\sqrt{12x}-\frac{1}{6}\sqrt{26}=3\)
\(\Leftrightarrow\frac{1}{12}\sqrt{12x}=3\)
\(\Leftrightarrow\sqrt{\frac{1}{12^2}}.\sqrt{12x}=3\)
\(\Leftrightarrow\sqrt{\frac{x}{12}}=3\)
\(\Leftrightarrow\frac{x}{12}=9\)
\(\Leftrightarrow x=108\)
Bài 3: Với \(x>0;y>0\), ta có:
\(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}+\sqrt{y}}=\frac{\sqrt{x^2}.\sqrt{y}-\sqrt{y^2}.\sqrt{x}}{\sqrt{xy}}.\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\frac{\sqrt{x^2y}-\sqrt{xy^2}}{\sqrt{xy}}.\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\frac{\sqrt{xy}\left(\sqrt{y}-\sqrt{x}\right)}{\sqrt{xy}}.\left(\sqrt{y}+\sqrt{x}\right)\)
\(=\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)\)
\(=y-x\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tìm miền xác định phải không
a)
\(1-\sqrt{2x-x^2}\)
a xác định \(\Leftrightarrow2x-x^2\ge0\)
\(0\le x\le2\)
b)
\(\sqrt{-4x^2+4x-1}\)
b xác định
\(\Leftrightarrow-4x^2+4x-1\ge0\)
\(-\left(4x^2-4x+1\right)\ge0\)
\(4x^2-4x+1\le0\)
\(\left(2x-1\right)^2\le0\)
2x - 1 = 0
x = 1/2
c)
\(\frac{x}{\sqrt{5x^2-3}}\)
c xác định
\(\Leftrightarrow5x^2-3>0\)
\(5x^2>3\)
\(x^2>\frac{3}{5}\)
\(\orbr{\begin{cases}x< -\frac{\sqrt{15}}{5}\\x>\frac{\sqrt{15}}{5}\end{cases}}\)
d)
d xác định
\(\Leftrightarrow\sqrt{x-\sqrt{2x-1}}>0\)
\(x-\sqrt{2x-1}>0\)
\(x>\sqrt{2x-1}\)
\(\hept{\begin{cases}2x-1\ge0\\x^2>2x-1\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x^2-2x+1>0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\\left(x-1\right)^2>0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x-1\ne0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne1\end{cases}}\)
e)
e xác định
\(\Leftrightarrow\frac{-2x^2}{3x+2}\ge0\)
\(3x+2< 0\) ( vì \(-2x^2\le0\forall x\) )
\(x< -\frac{2}{3}\)
f)
f xác định
\(\Leftrightarrow x^2+x-2>0\)
\(\orbr{\begin{cases}x< -2\\x>1\end{cases}}\)
<=>\(x+\sqrt{\left(x+1\right)\left(x+2\right)}=\sqrt{3x+1}\)
bình phương 2 vế lên
\(x^2+\left(x+1\right)\left(x+2\right)+2x\sqrt{\left(x+1\right)\left(x+2\right)}=\left(3x+1\right)\left(x+2\right)\)
khai triển ra ta đc
\(2x^2+2x+2+2x\sqrt{\left(x+1\right)\left(x+2\right)}=3x^2+7x+2\)
<=>\(2x\sqrt{\left(x+1\right)\left(x+2\right)}=2x^2+4x\)
<=>\(x\sqrt{\left(x+1\right)\left(x+2\right)}=x^2+2x\)