Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^4-5x^3+2x^2+10x+2=0\)
\(\Rightarrow x^4+x^3-6x^3-6x^2+8x^2+8x+2x+2=0\)
\(\Rightarrow x^3\left(x+1\right)-6x^2\left(x+1\right)+8x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^3-6x^2+8x+2\right)=0\)
Vì \(x^3-6x^2+8x+2>0\) nên \(x+1=0\Rightarrow x=-1\)
Các câu còn lại tương tự!
Chúc bạn học tốt!!!
Câu 2 sai đề nhé
Phải là:(x-999)/99+(x-896)/101+(x-789/103)=6
Bài khó xơi trước để mát dạ đã rồi tính
\(3.\) Điều kiện để phương trình trên có nghĩa \(a\ne0;\) \(b\ne0\) và \(c\ne0\) (theo giả thiết)
Trừ \(1\) vào mỗi phân thức ở \(VT\) và trừ \(3\) cho \(VP\), ta được:
\(\frac{x-a-b-c}{a}+\frac{x-a-b-c}{b}+\frac{x-a-b-c}{c}=0\)
\(\Leftrightarrow\) \(\left(x-a-b-c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\) \(\left(\text{*}\right)\)
\(\text{*)}\) Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ne0\) thì \(\left(\text{*}\right)\) \(\Rightarrow\) \(x-a-b-c=0\), tức \(x=a+b+c\)
\(\text{*)}\) Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) thì từ \(\left(\text{*}\right)\), ta suy ra phương trình trên có nghiệm luôn đúng với mọi \(x\)
Vậy, phương trình có nghiệm là \(x=a+b+c\) với trường hợp \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ne0\)
và \(S=R\) nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(1.\) Gọi \(x\) \(\left(m\right)\) là chiều rộng ban đầu của miếng đất hình chữ nhật.
nên chiều rộng của miếng đất sau khi tăng lên \(10\) \(\left(m\right)\) là \(x+10\) \(\left(m\right)\)
Vì chu vi của miếng đất là \(160\) \(\left(m\right)\) nên nửa chu vi của miếng đất đó sẽ bằng \(80\) \(\left(m\right)\)
Khi đó, chiều dài ban đầu: \(80-x\) \(\left(m\right)\) nên khi giảm đi \(10\) \(\left(m\right)\) thì chiều dài mới là \(70-x\) \(\left(m\right)\)
Điều kiện: \(x<70\)
Ta có phương trình:
\(\left(70-x\right)\left(x+10\right)-x\left(80-x\right)=200\) \(\Leftrightarrow\) \(x=25\) (thỏa mãn điều kiện)
Do đó, chiều dài ban đầu \(80-25=55\) \(\left(m\right)\)
Vậy, ......
a) x3+4x2+x-6=0
<=> x3+x2-2x+3x2+3x-6=0
<=>x(x2+x-2)+3(x2+x-2)=0
<=>(x+3)(x2+x-2)=0
<=>(x+3)(x2+2x-x-2)=0
<=>(x+3)[x(x+2)-(x+2)]=0
<=>(x+3)(x-1)(x+2)=0
=> x+3=0 hay
x-1=0 hay
x+2=0
<=> x=-3 hay x=1 hay x=-2
b)x3-3x2+4=0
\(\Leftrightarrow x^3-4x^2+4x+x^2-4x+4=0\)
\(\Leftrightarrow x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left\{\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
a: \(\left(3x-1\right)^2-\left(x+3\right)^3=\left(2-x\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow9x^2-6x+1-x^3-9x^2-27x-27=8-x^3\)
\(\Leftrightarrow-x^3-33x-26-8+x^3=0\)
=>-33x=34
hay x=-34/33
b: \(\left(x+1\right)\left(x-1\right)\left(x^2+1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow x^4-1-x^4+2x^2-1=2\)
\(\Leftrightarrow2x^2=4\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
c: \(x^2-2\sqrt{3}x+3=0\)
\(\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\)
hay \(x=\sqrt{3}\)
d: \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)-\left(x-\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}-x+\sqrt{2}\right)=0\)
\(\Leftrightarrow x-\sqrt{2}=0\)
hay \(x=\sqrt{2}\)
trong quá trình bạn xem bài mk thấy chỗ nào sai dấu thì sửa giùm mk nha trong quá trình làm mk cx có thể sai sót nhầm lẫn nha
Câu d : \({2x \over x+1}\) + \({18\over x^2+2x-3}\) = \({2x-5 \over x+3}\)
a) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)
\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2=0\right)\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-4x+x-2=0\right)\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2-4\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\pm2;-1\right\}\)
b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=0\)
\(\Leftrightarrow x-2=0\)hoặc \(x+2=0\)hoặc \(x^2-10=0\)
\(\Leftrightarrow x=2\)hoặc \(x=-2\)hoặc \(x=\pm\sqrt{10}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\pm2;\pm\sqrt{10}\right\}\)
c) \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)
\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2+5x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\left(tm\right)\\2\left(x+\frac{5}{4}\right)^2+\frac{7}{16}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)
d) Xem lại đề
Bạn tự phân tích đa thức thành nhân tử nhé!
\(1.\)
\(2x^3+x+3=0\)
\(\Leftrightarrow\) \(\left(x+1\right)\left(2x^2-2x+3\right)=0\) \(\left(1\right)\)
Vì \(2x^2-2x+3=2\left(x^2-x+1\right)+1=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}>0\) với mọi \(x\in R\)
nên từ \(\left(1\right)\) \(\Rightarrow\) \(x+1=0\) \(\Leftrightarrow\) \(x=-1\)
1)2x^3+x+3=0=>