Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
Gọi 3 số cần tìm là \(x,y,z\left(x,y,z\in Z;x,y,z>0\right)\)
Ta có : \(xyz=2\left(a+b+c\right)\)
Giả sử :\(x\ge y\ge z\Leftrightarrow xyz\le2.3x\)
\(xy\le6\) mà\(x,y\in Z\)
\(\Leftrightarrow xy\in\left\{1;2;3;4;5;6\right\}\)
Giải các trường hợp, ta được (x,y,z) là (1,3,8) ; (1,4,5) ; (2,2,4) và các hoán vị
a, Gọi hai số tự nhiên cần tìm là a và b
Ta có : a=6.k1;b=6.k2a=6.k1;b=6.k2
Trong đó : ƯCLN(k1,k2)=1ƯCLN(k1,k2)=1
Mà : a+b=84⇒6.k1+6.k2=84a+b=84⇒6.k1+6.k2=84
⇒6(k1+k2)=84⇒k1+k2=84÷6=14⇒6(k1+k2)=84⇒k1+k2=84÷6=14
+) Nếu : k1=1⇒k2=13⇒{a=6b=78k1=1⇒k2=13⇒{a=6b=78
+)Nếu : k1=3⇒k2=11⇒{a=18b=66k1=3⇒k2=11⇒{a=18b=66
+)Nếu : k1=5⇒k2=9⇒{a=30b=54k1=5⇒k2=9⇒{a=30b=54
Vậy ...
b, Tương tự câu a,
c, Gọi hai số tự nhiên cần tìm là a và b
Vì : ƯCLN(a,b)=10;BCNN(a,b)=900ƯCLN(a,b)=10;BCNN(a,b)=900
⇒ƯCLN(a,b).BCNN(a,b)=a.b=900.10=9000⇒ƯCLN(a,b).BCNN(a,b)=a.b=900.10=9000
Phần còn lại giống câu a và câu b bạn tự làm nha
chúc bạn hok tốt
Gọi độ dài 3 cạnh đó lần lượt là a;b;c (a;b;c thuộc tập hợp N*)
Do độ dài 3 cạnh của tam giác đó có tỉ lệ với 3;4;5 và chu vi của tam giác là 60cm nên
a/3=b/4+c/5 và a+b+c=60
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
a/3=b/4=c/5=a+b+c/3+4+5=60=5
Do đó
a/3=5 =>a=15
b/4=5 => b=20
c/5=5 => c=25
Vậy độ dài 3 cạnh đó là 15;20;25
k nha ,tui giải rồi đó
Ta đặt 3 cạnh của tam giác đó là a;b;c
Theo đề bài ta có: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{60}{12}=5\)
=> a = 5 x 3 = 15
b = 5 x 4 = 20
c = 5 x 5 = 25
Vậy 3 cạnh của tam giác đó là 15;20;25
gọi hai số là a và b
a x b = a + b
⇒ a x b - a = b
a x ( b - 1 ) = b
a = \(\dfrac{b}{b-1}\) = 1 +\(\dfrac{1}{b-1}\)
⇒ b - 1 \(\in\) Ư(1) = { -1; 1 }
⇒ b \(\in\) { 0; 2 }⇒a \(\in\) { 0; 2 }
Vậy hai số thoả mãn đề bài là
( a; b ) = ( 0; 0 ); ( 2; 2 )
Gọi số thứ nhất là và số thứ 2 là b, theo đề bài ta có:
\(\frac{2}{3}a=\frac{3}{4}b=>\frac{a}{b}=\frac{\frac{3}{4}}{\frac{2}{3}}=\frac{9}{8}=>\frac{a^2}{b^2}=\frac{81}{64}=>\frac{a^2}{81}=\frac{b^2}{64}\); \(a^2-b^2=68\)và \(a,b\in N\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a^2}{81}=\frac{b^2}{64}=\frac{a^2-b^2}{81-64}=\frac{68}{17}=4\)
=> \(\frac{a^2}{81}=4=>a^2=324=>a=18\)
=> \(\frac{b^2}{64}=4=>b^2=256=>b=16\)
Vậy...
2.Gọi hai số dương lần lượt là x và y
Theo đề bài ta có : \(\frac{x+y}{\frac{1}{35}}=\frac{x-y}{\frac{1}{210}}=\frac{xy}{\frac{1}{12}}\)
hay \(35\left(x+y\right)=210\left(x-y\right)=12\left(x\cdot y\right)\)
Mà \(BCNN\left(35,210,12\right)=420\)
=> \(\frac{35\left(x+y\right)}{420}=\frac{210\left(x-y\right)}{420}=\frac{12\left(x\cdot y\right)}{420}\)
=> \(\frac{x+y}{12}=\frac{x-y}{2}=\frac{x\cdot y}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
+)\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)-\left(x-y\right)}{12-2}=\frac{2y}{10}=\frac{y}{5}\)(1)
+) \(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)+\left(x-y\right)}{12+2}=\frac{2x}{14}=\frac{x}{7}\)(2)
=> Từ (1) và (2) => \(\frac{x}{7}=\frac{y}{5}\)
Đặt \(\frac{x}{7}=\frac{y}{5}=k\Rightarrow\orbr{\begin{cases}x=7k\\y=5k\end{cases}}\)
=> \(xy=7k\cdot5k=35k^2\)
=> \(35k^2=35\)
=> \(k^2=1\)
=> k = 1(loại âm vì đề bài cho 2 số dương)
Do đó : \(\frac{x}{7}=1\Rightarrow x=7\)
\(\frac{y}{5}=1\)=> \(y=5\)
Vậy x = 7,y = 5
1. Câu hỏi của I will shine on the sky - Toán lớp 7 - Học toán với OnlineMath
Gọi phân số đó là \(\frac{a}{b}\left(a;b\in N;a;b\ne0\right)\)
a) Ta có :
\(a+b=ab\)
\(\Rightarrow a+b-ab=0\)
\(a\left(1-b\right)+b=0\)
\(b-1-a\left(b-1\right)=0-1\)
\(\left(1-a\right)\left(b-1\right)=-1\)
\(\Rightarrow1-a;b-1\inƯ\left(-1\right)=\left\{-1;1\right\}\)
Ta có bảng :
1-a a b-1 b 1 1 -1 -1 0 0 2 2 Mà \(b\ne0\Rightarrow\frac{a}{b}=\frac{2}{2}\) không phải là phân số tối giản.
Dó không viết được phân số thỏa mãn.
b) Ta có :
\(a-b=ab\)
\(\Rightarrow a-b-ab=0\)
\(a\left(1-b\right)-b+1=0+1\)
\(\left(a+1\right)\left(1-b\right)=1\)
\(\Rightarrow a+1;1-b\inƯ\left(1\right)=\left\{-1;1\right\}\)
Ta có bảng sau :
a b 1 -1 0 0 2 a+1 1-b 1 -1 -2 ( loại )
Ta chỉ còn trường hợp a = b = 0; và không thỏa mãn.
Vậy không viết được phân số thỏa mãn.
Gọi phân số đó là \(\frac{a}{b}\) ( a ; b \(\in N\)a ; b \(\ne\)0)
a) Ta có :
\(a+b=ab\)
\(\Rightarrow a+b-ab=0\)
\(a\left(1-b\right)+b=0\)
\(b-1-a\left(b-1\right)=0-1\)
\(\left(1-a\right)\left(b-1\right)=-1\)
\(\Rightarrow1-a;b\inƯ\left(-1\right)=\left\{-1;1\right\}\)
Ta có bảng
1 - a | 1 | -1 |
a | 0 | 2 |
b - 1 | -1 | 1 |
b | 0 | 2 |
b \(\ne\)0 => \(\frac{a}{b}=\frac{2}{2}\) không phải là phân số tối giản
Do đó không viết được phân số thỏa mãn
b tương tự
\(\text{Bài giải}\)
\(\text{Gọi phân số tối giản có tử và mẫu là số tự nhiên đó là : }\frac{a}{b}\) \(\left(a,b\ne0\right)\)
\(a,\text{ Ta có : }\)
\(a+b=ab\)
\(\Leftrightarrow\text{ }a+b-ab=0\)
\(a\left(1-b\right)+b=0\)
\(b-1-a\left(b-1\right)=0\)
\(\left(1-a\right)\left(b-1\right)=-1\)
\(\text{ }\Rightarrow\text{ }1-a,b\text{ }\inƯ\left(-1\right)=\left\{\pm1\right\}\)
\(\text{Ta có bảng : }\)
\(1-a\) | \(1\) | \(-1\) |
\(a\) | \(0\) | \(2\) |
\(b-1\) | \(-1\) | \(1\) |
\(b\) | \(0\) | \(2\) |
\(b\ne0\)\(\Rightarrow\text{ }\frac{a}{b}=\frac{2}{2}\text{ không phải là phân số tối giản}\)
\(\text{Do đó không tìm được phân số thỏa mãn}\)
\(b,\text{ Ta có : }\)
\(a-b=a\cdot b\)
\(\approx\text{Làm tương tự }\)