Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Công thức Anh-xtanh cho hiện tượng quang điện trong
\(hf = A+ eU_{h}\)
\(\lambda_1 < \lambda_2\) => \(hf_1 > hf_2\)=> \(eU_{h1} > eU_{h2}\)
=> \(U_{h1} >U_{h2}\)
Chỉ cẩn tính \(U_{h1}\) để đảm bảo triệt tiêu dòng quang điện cho cả hai bức xạ.
\(eU_{h1} = hc(\frac{1}{\lambda_1} - \frac{1}{\lambda_0}) = \frac{hc}{\lambda_0}\)=> \(U_{h1} = 1,5 V\)
Chọn đáp án.A.1,5V
Điểu chỉnh điện dung C của tụ thấy C = C1 và C = C2 thì có cùng giá trị hiệu dụng của tụ điện \(U_{C1} = U_{C2}\).
Khi đó để \(U_{Cmax}\) thì \(C=C_0 = \frac{C_1+C_2}{2}\)
Chọn đáp án.D.
\(eU_{h1}=W_{đ1}\)
\(eU_{h1}=W_{đ1}\)
\(\Rightarrow \dfrac{U_{h1}}{U_{h2}}=\dfrac{W_{đ1}}{W_{đ2}}=(\dfrac{v_1}{v_2})^2=4\)
Hệ thức Anh -xtanh
\(hf = A+ eU_h\)
=> \(eU_h = hf - A= 6,625.10^{-34}.3.10^8.(\frac{1}{0,33.10^{-6}}-\frac{1}{0,66.10^{-6}})= 3,01.10^{-19}J.\)
=> \(U_h = \frac{3,01.10^{-19}}{1,6.10^{-19}}=1,88 V.\)
=> \(U_{AK} \leq -1,88V\)
\(\leftrightarrow\frac{u^2_R}{\left(\frac{8}{5}\right)^2}+\frac{u^2_L}{\left(\frac{5}{2}\right)^2}=1\)
Điều kiện :
\(\begin{cases}u_R\le\frac{8}{5}\left(V\right)\\u_L\le\frac{5}{2}\left(V\right)\end{cases}\)
\(\Rightarrow U_{\text{oR}}=\frac{8}{5}\left(V\right);U_{0L}=\frac{5}{2}\left(V\right)\)
\(\Rightarrow\frac{R}{\omega L}=\frac{8}{5}.\frac{2}{5}=\frac{16}{25}\leftrightarrow L=\frac{25R}{16L}=\frac{1}{2\pi}\left(H\right)\)
Đáp án C
Công thức Anh-xtanh: \(hf = A+ eU_h\)
\(\frac{hc}{\lambda_1} = A+ eU_{h1}\) => \(eU_{h1} = \frac{hc}{\lambda_1} - A = hc(\frac{2}{\lambda_0} - \frac{1}{\lambda_0}) = \frac{hc}{\lambda_0}.\)
\(\frac{hc}{\lambda_2} = A+ eU_{h2}\)=> \(eU_{h2} = \frac{hc}{\lambda_2} - A = hc(\frac{3}{\lambda_0} - \frac{1}{\lambda_0}) = 2.\frac{hc}{\lambda_0}.\)
=> \(\frac{U_{h1}}{U_{h2}} = \frac{1}{2}\)
=> Chọn đáp án C.