- Với m=1 hệ trở thành : \(\hept{\begin{cases}-x-3y=-5\left(1\right)\\x+y=3\left(2\right)\end{cases}}\)cộng 1 và 2 : \(\Rightarrow-2y=-2\Rightarrow y=1\)thay y vào 2 có : \(x=3-y=3-1=2\)vậy nghiệm phương trình là : \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)
- \(\hept{\begin{cases}\left(m-2\right)x-3y=-5\left(3\right)\\x+my=3\left(4\right)\end{cases}}\) từ 4 có :\(x=3-my\)thế vào phương trình 3 đc :\(\left(m-2\right)\left(3-my\right)-3y=-5\)\(\Leftrightarrow3m-m^2y-6+2my-3y=-5\)\(\Leftrightarrow y\left(m^2-2m+3\right)=3m-1\Leftrightarrow y=\frac{3m-1}{m^2-2m+3}\)để phương trình có nghiệm thì \(m^2-2m+3\ne0\)thật vây \(m^2-2m+3=\left(m^2-2m+1\right)+2=\left(m-1\right)^2+2\ge2\forall m\)nên phương trinh có 1 nghiệm với mọi m => hệ phương trình có một nghiệm duy nhất với mợi m . Khi đó phương trình của hệ là: \(\hept{\begin{cases}y=\frac{3m-1}{m^2-2m+3}\\x=3-my\end{cases}}\Leftrightarrow\hept{\begin{cases}y=\frac{3m-1}{m^2-2m+3}\\x=3-\frac{\left(3m-1\right)m}{m^2-2m+3}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y=\frac{3m-1}{m^2-2m+3}\\x=\frac{3m^2-6m+9-3m^2+m}{m^2-2m+3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{9-5m}{m^2-2m+3}\\y=\frac{3m-1}{m^2-2m+3}\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Theo bài ra ta có : \(\hept{\begin{cases}mx+4y=9\\x+my=8\end{cases}}\)
Thay m = 1 vào hệ phương trình trên ta có :
\(\hept{\begin{cases}x+4y=9\\x+y=8\left(2\right)\end{cases}}\)Xét hiệu 2 phương trình : \(3y=1\Leftrightarrow y=\frac{1}{3}\)
Thay vào (2) ta được : \(x+\frac{1}{3}=8\Leftrightarrow x=8-\frac{1}{3}=\frac{23}{3}\)
Vậy \(x=\frac{23}{3};y=\frac{1}{3}\)
b, Vì hệ phương trình có nghiệm ( 1 ; 3 ) nên thay x = 1 ; y = 3 vào hệ phương trình trên :
\(\hept{\begin{cases}m+12=9\\3m=8\end{cases}\Leftrightarrow}m=-3;m=\frac{8}{3}\)
Vậy \(m=-3;m=\frac{8}{3}\)
a, Vì m = 1 thay vào hệ pt, ta có pt sau
\(\hept{\begin{cases}x+4y=9\\x+y=8\end{cases}\Leftrightarrow\hept{\begin{cases}x=9-4y\left(1\right)\\9-4y+y=8\left(2\right)\end{cases}}}\)
\(\left(2\right)\Leftrightarrow3y=1\)
\(\Rightarrow y=\frac{1}{3}\)
Thay vào pt ( 1 ), ta có :
\(x=9-4.\frac{1}{3}=\frac{23}{3}\)
Vậy nghiệm ( x ; y ) pt là\(\left(\frac{23}{3};\frac{1}{3}\right)\)
b, Vì pt có nghiệm là ( 1 ; 3 ) hay x = 1 ; y = 3
Thay vào pt, ta có :\(\hept{\begin{cases}m+12=9\\1+3m=8\end{cases}\Leftrightarrow}\hept{\begin{cases}m=-3\\m=\frac{7}{3}\end{cases}}\)
Vậy ...
Ta có:
m − 2 x − 3 y = − 5 x + m y = 3 ⇔ m − 2 3 − m y − 3 y = − 5 x = 3 − m y ⇔ 3 m − m 2 y − 6 + 2 m y − 3 y = − 5 x = 3 − m y ⇔ m 2 − 2 m + 3 y = 3 m − 1 1 x = 3 − m y 2
Ta có: m 2 – 2 m + 3 = ( m – 1 ) 2 + 2 > 0 ∀ m nên PT (1) có nghiệm duy nhất ∀ m
Hay hệ phương trình có nghiệm duy nhất ∀ m
Từ (1) ta có: y = 3 m − 1 m 2 − 2 m + 3 thay vào (2) ta có x = 9 − 5 m m 2 − 2 m + 3
Vậy x ; y = 9 − 5 m m 2 − 2 m + 3 ; 3 m − 1 m 2 − 2 m + 3
Đáp án: B
`a,x-3y=2`
`<=>x=3y+2` ta thế vào phương trình trên:
`2(3y+2)+my=-5`
`<=>6y+4+my=-5`
`<=>y(m+6)=-9`
HPT có nghiệm duy nhất:
`<=>m+6 ne 0<=>m ne -6`
HPT vô số nghiệm
`<=>m+6=0,-6=0` vô lý `=>x in {cancel0}`
HPT vô nghiệm
`<=>m+6=0,-6 ne 0<=>m ne -6`
b,HPT có nghiệm duy nhất
`<=>m ne -6`(câu a)
`=>y=-9/(m+6)`
`<=>x=3y+2`
`<=>x=(-27+2m+12)/(m+6)`
`<=>x=(-15+2m)/(m+6)`
`x+2y=1`
`<=>(2m-15)/(m+6)+(-18)/(m+6)=1`
`<=>(2m-33)/(m+6)=1`
`2m-33=m+6`
`<=>m=39(TM)`
Vậy `m=39` thì HPT có nghiệm duy nhất `x+2y=1`
b)Ta có: \(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\2\left(2+3y\right)+my=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\6y+my+4=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y\left(m+6\right)=-9\end{matrix}\right.\)
Khi \(m\ne6\) thì \(y=-\dfrac{9}{m+6}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y=\dfrac{-9}{m+6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\cdot\dfrac{-9}{m+6}+2\\y=-\dfrac{9}{m+6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-27}{m+6}+\dfrac{2m+12}{m+6}=\dfrac{2m-15}{m+6}\\y=\dfrac{-9}{m+6}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1 thì \(\dfrac{2m-15}{m+6}+\dfrac{-18}{m+6}=1\)
\(\Leftrightarrow2m-33=m+6\)
\(\Leftrightarrow2m-m=6+33\)
hay m=39
Vậy: Khi m=39 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1
a. Bạn tự giải
b. Thế cặp nghiệm x=-1, y=3 vào hệ ban đầu ta được:
\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3m=10\\-m=13\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
c. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=9m\\mx-3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+3\right)y=9m-4\\mx-3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{9m-4}{m^2+3}\\x=\dfrac{4m+27}{m^2+3}\end{matrix}\right.\)
Vậy với mọi m thì hệ luôn có nghiệm duy nhất như trên
a) Thay m=1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x+4y=9\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=1\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=8-y=8-\dfrac{1}{3}=\dfrac{23}{3}\end{matrix}\right.\)
Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{23}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
b) Để hệ phương trình có nghiệm (1;3) thì
Thay x=1 và y=3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}m+12=9\\1+3m=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-3\\3m=7\end{matrix}\right.\Leftrightarrow m\notin\varnothing\)
Vậy: Không có giá trị nào của m để hệ phương trình có nghiệm (1;3)
Thay m=1 vào hpt trên ta có:
1.x+4y=9 và x+1y=8
<=> x+4y=9 và x+y=8
<=> x+4y=9 và 4x+4y=32
<=> -3x = -23 và x+y=8
<=> x = \(\dfrac{23}{3}\) và y = \(\dfrac{1}{3}\)
b) Để hệ phương trình có nghiệm (1;3)
=> x = 1; y = 3
Thay x = 1; y = 3 vào hpt trên ta có:
m1+43=9 và 1+m3=8
<=> m+12 = 9 và 1 + 3m = 8
<=> m = -3 và m = \(\dfrac{7}{3}\)
Vậy m \(\in\left\{-3;\sqrt{\dfrac{7}{3}}\right\}\) thì hệ phương trình có nghiệm (1;3)
c) mx+4y=9 và x+my=8
SD phương pháp thế
Ra pt bậc nhất 1 ẩn: 8m - m2y + 4y = 9
<=> 8m - y(m2 -4) = 9
Để hệ phương trình có nghiệm duy nhất => m2 -4 \(\ne\) 0
<=> m2 \(\ne\) 4
<=> m \(\ne\) 2 và m \(\ne\) -2