Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{\left(x+1\right)^2+1}{\left(x+1\right)}>\frac{\left(x+2\right)^2+1}{x+2}+1\)
\(\Leftrightarrow x+1+\frac{1}{x+1}>x+2+\frac{1}{x+2}+1\)
\(\Leftrightarrow\left(x+1-x-2-1\right)+\frac{1}{x+1}>\frac{1}{x+2}\)
\(\Leftrightarrow\frac{1}{x+1}-2>\frac{1}{x+2}\)(BẠN TỰ QUY ĐỒNG VÀ GIẢI NHÉ)
Điều kiện: \(x\ne2\)
Pt: \(\Leftrightarrow2^{\dfrac{3x}{x+2}}=2^2.3^{4-x}\Leftrightarrow3^{\dfrac{x-4}{x+2}}=3^{4-x}\)
\(\Leftrightarrow\dfrac{x-4}{x+2}\log_32=4-x\)
\(\Leftrightarrow\left(x-4\right)\left(x+2+\log_32\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2-\log_32\end{matrix}\right.\)
`#` `\text{dkhanhqlv}`
`2x^3=x^2+2x-1`
`<=>2x^3-x^2-2x+1=0`
`<=>(2x^3-2x)-(x^2-1)=0`
`<=>2x(x^2-1)-(x^2-1)=0`
`<=>(x^2-1)(2x-1)=0`
`<=>(x+1)(x-1)(2x-1)=0`
`<=>x+1=0` hoặc `x-1=0` hoặc `2x-1=0`
`@TH1:x+1=0<=>x=-1`
`@TH2:x-1=0<=>x=1`
`@TH3:2x-1=0<=>x=0,5`
Vậy tập nghiệm của phương trình đã cho là `S={-1;1;0,5}`
2x^3 = x^2 + 2x - 1
=>2x3 - x2 -2x +1=(x-1).(x+1).(2x-1)
=>x-1=0
=>x=-1
=>x=1
=>x=1/2
a: =>x(x+4)>=0
=>x>=0 hoặc x<=-4
b:=>x+3>0
hay x>-3
c: =>(x-1)(x+1)<0
=>-1<x<1
d: \(x^2+1>=1>0\forall x\)
nên \(x\in R\)
e: =>(2x-3)(2x+3)>=0
=>x>=3/2 hoặc x<=-3/2