Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B3: \(\sqrt{x^4-4x^3+2x^2+4x+1}=3x-1\)
\(pt\Leftrightarrow x^4-4x^3+2x^2+4x+1=\left(3x-1\right)^2\)
\(\Leftrightarrow x^4-4x^3+2x^2+4x+1=9x^2-6x+1\)
\(\Leftrightarrow x^4-4x^3-7x^2+10x=0\)
\(\Leftrightarrow x\left(x^3-4x^2-7x+10\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\) (thỏa mãn (mấy cái kia loại hết))
1)ĐK : ........
đặt \(\sqrt{x+5}=a;\sqrt{x+2=b}\) ta có \(a^2-b^2=x+5-x-2=3\)
pt <=> \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
=> \(\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(1+ab\right)=0\)
=> \(\left(a-b\right)\left(a+b-ab-1\right)=0\)
=> \(\left(a-b\right)\left(a-1\right)\left(1-b\right)=0\)
đến đây bạn tự giải nha
2) xét
VT = \(\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\ge\sqrt{1}+\sqrt{9}=4\)
Dấu = xảy ra khi x =3
\(-5-x^2+6x=-\left(x-3\right)^2+4\le4\)
Dấu bằng xảy ra tại x = 3
=> VT = VP = 4 tại x = 3
Vậy x = 3 là n* duy nhất
1 . \(\sqrt{x^4-2x^2+1}=x-1\)
<=> \(\sqrt{\left(x^2-1\right)^2}=x-1\)
<=> \(x^2-1=x-1\)
<=> \(x^2-x=0\)(vậy pt vô nghiệm)
1,\(\sqrt{\left(x^2-1\right)^2}=x-1\)
<=>\(x^2-x=0\)
<=>\(\orbr{\begin{cases}x1=0\\x2=1\end{cases}}\)
1,\(\sqrt{\left(x^2+4\right)}=5-\sqrt{\left(x^2+10\right)}\)
<=>\(x^2+4=25-10\sqrt{x^2+10}+x^2+10\)
<=>x^2 = -0.39 vô lý => vô nhiệm
6) \(pt<=>x^4+4x^3+6x^2+4x+1=2x^4+2\)
<=> \(x^4-4x^3-6x^2-4x+1=0\)
dễ thẫy x = 0 không là nghiệm chia cả hai vế cho x^2
\(pt<=>x^2-4x-6-\frac{4}{x}+\frac{1}{x^2}=0\)
<=> \(x^2+\frac{1}{x^2}-4\left(x+\frac{1}{x}\right)-6=0\)
Đặt x + 1/x = t pt <=> \(t^2-2-4t-6=0\)
Giải pt ẩn t sau đó tìm x