Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{2}\cdot x-\sqrt{50}=0< =>\sqrt{2}\cdot x=\sqrt{50}\)
<=> x= 5
b) \(\sqrt{3}\cdot x+\sqrt{3}=\sqrt{12}+\sqrt{27}\)
<=> \(\sqrt{3}\cdot\left(x+1\right)=\sqrt{3}\cdot\sqrt{4}+\sqrt{3}\cdot\sqrt{9}\)
<=> \(\sqrt{3}\cdot\left(x+1\right)=\sqrt{3}\cdot5< =>x+1=5\)
<=> x=4
c) \(\sqrt{3}\cdot x^2-\sqrt{12}=0\\ < =>x^2=\sqrt{4}=2;-2\\ < =>x=\sqrt{2};-\sqrt{2}\)
d) \(\dfrac{x^2}{\sqrt{5}}-\sqrt{20}=0\\ < =>x^2=\sqrt{100}=10;-10\\ < =>x=\sqrt{10};-\sqrt{10}\)
a, \(\sqrt{2}x-\sqrt{50}=0\Leftrightarrow\sqrt{2}x-5\sqrt{2}=0\Leftrightarrow\sqrt{2}\left(x-5\right)=0\Leftrightarrow x=5\)
b, \(\sqrt{3}x+\sqrt{3}=\sqrt{12}+\sqrt{27}\Leftrightarrow\sqrt{3}\left(x+1\right)=5\sqrt{3}\Leftrightarrow x+1=5\Leftrightarrow x=4\)
c, \(\sqrt{3}x^2-\sqrt{12}=0\Leftrightarrow\sqrt{3}\left(x^2-2\right)=0\Leftrightarrow x^2-2=0\Leftrightarrow x=\pm\sqrt{2}\)
d, \(\dfrac{x^2}{\sqrt{5}}-\sqrt{20}=0\Leftrightarrow\dfrac{1}{\sqrt{5}}\left(x^2-10\right)=0\Leftrightarrow x^2-10=0\Leftrightarrow x=\pm\sqrt{10}\)
a) \(\sqrt{3}x-\sqrt{12}=0< =>\sqrt{3}x=\sqrt{12}=>x=2\)
Vay S = { 2 }
b) \(\sqrt{2}x+\sqrt{2}=\sqrt{8}+\sqrt{18}< =>\sqrt{2}x=\sqrt{8}+\sqrt{18}-\sqrt{2}< =>\sqrt{2}x=2\sqrt{2}+3\sqrt{2}-\sqrt{2}\) <=> \(\sqrt{2}x=4\sqrt{2}=>x=4\)
Vay S = { 4 }
c) \(\sqrt{5}x^2-\sqrt{20}=0< =>\sqrt{5}x^2=\sqrt{20}< =>x^2=2=>x=\sqrt{2}\)
Vay S = {\(\sqrt{2}\) }
d) \(\sqrt{x^2+6x+9}=3x+6< =>\sqrt{\left(x+3\right)^2}=3x+6< =>x+3=3x+6< =>-2x=\) \(3=>x=-\dfrac{3}{2}\)
Vay S = { - 3/2 }
e) \(\sqrt{x^2-4x+4}-2x+5=0< =>\sqrt{\left(x-2\right)^2}-2x+5=0< =>x-2-2x+5=0\) <=> \(-x+3=0< =>-x=-3=>x=3\)
Vay S = { 3 }
F) \(\sqrt{\dfrac{2x-3}{x-1}}=2\)
<=> \(\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)
Vay S = { 1/2 }
g) \(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2< =>\sqrt{\dfrac{2x-3}{x-1}}=2< =>\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)
bạn chưa có ĐKXĐ nên chưa xét kết quả có đúng vs Đk ko, có vài câu sai kết quả
Trần Hữu Ngọc Minh xem tôi làm có đúng ko?
Giải:
a, \(\sqrt{2}.x-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2}.x=\sqrt{50}\Leftrightarrow\sqrt{2}.x=\sqrt{25.2}\)
\(\Leftrightarrow\sqrt{2}.x=\sqrt{25}.\sqrt{2}\Leftrightarrow\sqrt{2}.x=5\sqrt{2}\)
\(\Leftrightarrow x=5\)
c, \(\sqrt{3}.x^2-\sqrt{12}=0\)
\(\Leftrightarrow\sqrt{3}.x^2=\sqrt{12}\)
\(\Leftrightarrow\sqrt{3}.x^2=\sqrt{4.3}\)
\(\Leftrightarrow\sqrt{3}.x^2=\sqrt{4}.\sqrt{3}\)
\(\Leftrightarrow\sqrt{3}.x^2=2\sqrt{3}\)
\(\Leftrightarrow x^2=2\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
d, \(\frac{x^2}{\sqrt{5}}-\sqrt{20}=0\)
\(\Leftrightarrow\frac{x^2}{\sqrt{5}}=\sqrt{20}\)
\(\Leftrightarrow x^2=\sqrt{5}.\sqrt{20}\)
\(\Leftrightarrow x^2=\sqrt{100}\)
\(\Leftrightarrow x=\pm10\)
a) ĐK: \(x\ge5\)
\(\sqrt{4x-20}+\frac{1}{3}\sqrt{9x-45}-\frac{1}{5}\sqrt{16x-80}=0\)
\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}+\frac{1}{3}\sqrt{9\left(x-5\right)}-\frac{1}{5}\sqrt{16\left(x-5\right)}=0\)
\(\Leftrightarrow\)\(2\sqrt{x-5}+\sqrt{x-5}-\frac{4}{5}\sqrt{x-5}=0\)
\(\Leftrightarrow\)\(\frac{11}{5}\sqrt{x-5}=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\) (t/m)
Vậy
b) \(-5x+7\sqrt{x}=-12\)
\(\Leftrightarrow\)\(5x-7\sqrt{x}-12=0\)
\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)
đến đây tự làm
c) d) e) bạn bình phương lên
f) \(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^4-2x^2+1\right)+25}\)
\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2}\)
\(\ge\sqrt{9}+\sqrt{25}=8\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}}\)\(\Leftrightarrow\)\(x=-1\)
Vậy...
a)\(\frac{\sqrt{a-2\sqrt{ab}+b}}{\sqrt{\sqrt{a}-\sqrt{b}}}=\frac{\sqrt{\left(\sqrt{a}-\sqrt{b}\right)^2}}{\sqrt{\sqrt{a}-\sqrt{b}}}=\sqrt{a}-\sqrt{b}\) (vì a > b > 0)
b) \(\frac{\sqrt{x-3}}{\sqrt{\sqrt{x}+\sqrt{3}}}:\frac{\sqrt{\sqrt{x}-\sqrt{3}}}{\sqrt{3}}=\frac{\sqrt{3}.\sqrt{x-3}}{\sqrt{\left(\sqrt{x}+\sqrt{3}\right)\left(\sqrt{x}-\sqrt{3}\right)}}=\frac{\sqrt{3\left(x-3\right)}}{\sqrt{x-3}}=\sqrt{3}\)
c) \(2y^2\sqrt{\frac{x^4}{4y^2}}=2y^2\cdot\frac{x^2}{-2y}=-x^2y\) (vì y < 0)
d) \(\frac{y}{x}\cdot\sqrt{\frac{x^2}{y^4}}=\frac{y}{x}\cdot\frac{x}{y^2}=\frac{1}{y}\)(vì x > 0)
e) \(5xy\cdot\sqrt{\frac{25x^2}{y^6}}=5xy\cdot\frac{-5x}{y^3}=\frac{-25x^2}{y^2}\) (Vì x < 0, y > 0)
a) \(\sqrt{2}x-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2}x=\sqrt{50}\)
\(\Leftrightarrow x=\frac{\sqrt{50}}{\sqrt{2}}=\sqrt{\frac{50}{2}}=\sqrt{25}=5\)
b) \(\sqrt{3}x+\sqrt{3}=\sqrt{12}+\sqrt{27}\)
\(\Leftrightarrow\sqrt{3}\left(x+1\right)=2\sqrt{3}+3\sqrt{3}\)
\(\Leftrightarrow\sqrt{3}x=5\sqrt{3}\)
\(\Leftrightarrow x=5\)
c) \(\sqrt{3}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\sqrt{3}\left(x^2-2\right)=0\)
\(\Leftrightarrow x^2-2=0\)
\(\Leftrightarrow x^2=2\Leftrightarrow\left[\begin{array}{nghiempt}x=\sqrt{2}\\x=-\sqrt{2}\end{array}\right.\)
d) \(\frac{x^2}{\sqrt{5}}-\sqrt{20}=0\)
\(\Leftrightarrow\)\(\frac{1}{\sqrt{5}}\left(x^2-10\right)=0\)
\(\Leftrightarrow x^2-10=0\)
\(\Leftrightarrow x^2=10\Leftrightarrow\left[\begin{array}{nghiempt}x=\sqrt{10}\\x=-\sqrt{10}\end{array}\right.\)