Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{27}{3\sqrt{3x-2}+6}+\frac{8+4x-x^2}{x\sqrt{6-x}+4}\ge\frac{3}{2}+\frac{2x-14}{3\sqrt{6-x}+2}>0\)
Nên phần còn lại vô nghiệm
a: \(\Leftrightarrow\left\{{}\begin{matrix}35x-28y=21\\35x-45y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17y=-19\\5x-4y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{19}{17}\\x=-\dfrac{5}{17}\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{8}{y}=18\\\dfrac{10}{x}+\dfrac{8}{y}=102\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{x}=120\\\dfrac{1}{x}-\dfrac{8}{y}=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{120}\\y=-\dfrac{44}{39}\end{matrix}\right.\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{30}{x-1}+\dfrac{3}{y+2}=3\\\dfrac{25}{x-1}+\dfrac{3}{y+2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x-1}=1\\\dfrac{10}{y-1}+\dfrac{1}{y+2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=5\\\dfrac{1}{y+2}+2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=-3\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{135}{2x-y}+\dfrac{160}{x+3y}=35\\\dfrac{135}{2x-y}-\dfrac{144}{x+3y}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3y=8\\2x-y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+6y=16\\2x-y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=5\end{matrix}\right.\)
\(VT=\frac{\left(yz\right)^2}{x^2yz\left(y+z\right)}+\frac{\left(zx\right)^2}{xy^2z\left(z+x\right)}+\frac{\left(xy\right)^2}{xyz^2\left(x+y\right)}\)
\(VT=\frac{2\left(yz\right)^2}{xy+xz}+\frac{2\left(zx\right)^2}{xy+yz}+\frac{2\left(xy\right)^2}{xz+yz}\)
\(VT\ge\frac{2\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=xy+yz+zx\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt[3]{2}}\)
1. \(\begin{cases}x+y+xy\left(2x+y\right)=5xy\\x+y+xy\left(3x-y\right)=4xy\end{cases}\) \(\Leftrightarrow\begin{cases}2y-x=1\\x+y+xy\left(2x+y\right)=5xy\end{cases}\) (trừ 2 vế cho nhau)
\(\Leftrightarrow\begin{cases}x=2y-1\\\left(2y-1\right)+y+\left(2y-1\right)y\left(4y-2+y\right)=5\left(2y-1\right)y\end{cases}\) \(\Leftrightarrow\begin{cases}x=2y-1\\10y^3-19y^2+10y-1=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=1\\y=1\end{cases}\)
Lời giải:
ĐKXĐ: \(x>0,y\geq 0\)
Đặt \(x=a,\sqrt{xy}=b\). Nhân hai vế của PT $(2)$ với \(x\sqrt{x}\) ta có:
\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} b^2+b+1=a\\ b^3+1=a+3ab\end{matrix}\right.\Rightarrow b^3+1=b^2+b+1+3ab\)
\(\Rightarrow b^3+1=b^2+b+1+3ab\Leftrightarrow b(b^2-b-1-3a)=0\)
TH1: \(b=0\Rightarrow \sqrt{xy}=0\). Vì $x\neq 0$ nên $y=0$. Thay vào PT $(1)$ suy ra $x=1$. Thử lại thỏa mãn
Ta có bộ $(x,y)=(1,0)$
TH2: \(b^2-b-1-3a=0\). Kết hợp với \(b^2+b+1=a\Rightarrow 3(b^2+b+1)-(b^2-b-1)=0\)
\(\Leftrightarrow b^2+2b+2=(b+1)^2+1=0(\text{vl})\)
Vậy HPT có nghiệm $(x,y)=(1,0)$
ĐK: x khác 0
pt (2) \(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2=13\)
Đặt \(a=x+\frac{1}{x};b=y+\frac{1}{y}\), hệ pt trở thành:
\(\begin{cases}a+b=5\\a^2+b^2=13\end{cases}\) giải hệ pt đối xứng loại I được
\(\begin{cases}a=2\\b=3\end{cases}\) hoặc \(\begin{cases}a=3\\b=2\end{cases}\)
Thế vào được tập nghiệm của hệ pt đã cho:
\(\left\{\left(1;\frac{3-\sqrt{5}}{2}\right);\left(1;\frac{3+\sqrt{5}}{2}\right);\left(\frac{3-\sqrt{5}}{2};1\right);\left(\frac{3+\sqrt{5}}{2};1\right)\right\}\)
cam on minh da biet lam bai nay, truoc khi ban tra loi nen minh chua tick dung dau nhe ,mac du cach lam dung roi
Lời giải
\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} \frac{xy+yz+xz}{y+z}=\frac{1}{2}\\ \frac{xy+yz+xz}{z+x}=\frac{1}{3}\\ \frac{xy+yz+xz}{x+y}=\frac{1}{4}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{x+z}{y+z}=\frac{3}{2}\\ \frac{x+y}{x+z}=\frac{4}{3}\\ \frac{y+z}{x+y}=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2x-3y-z=0\\ -x+3y-4z=0\\ -x+y+2z=0\end{matrix}\right.\Rightarrow 3x=5y=15z\)
Thay vào phương trình ban đầu: \(5z+\frac{3z.z}{3z+z}=\frac{1}{2}\Leftrightarrow z=\frac{2}{23}\Rightarrow x=\frac{10}{23},y=\frac{6}{23}\)
Thử lại thấy đúng
Vậy nghiệm của HPT là \((x,y,z)=(\frac{10}{23},\frac{6}{23},\frac{2}{23})\)