Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK:\(x,y,z\ge \frac{1}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(2x+2y+2z-\sqrt{4x-1}-\sqrt{4y-1}-\sqrt{4z-1}=0\)
\(\Leftrightarrow\left(4x-1-2\sqrt{4x-1}+1\right)+\left(4y-1-2\sqrt{4y-1}+1\right)+\left(4z-1-2\sqrt{4z-1}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{4x-1}-1\right)^2+\left(\sqrt{4y-1}-1\right)^2+\left(\sqrt{4z-1}-1\right)^2=0\)
Dễ thấy: \(VT\ge0\forall x,y,z\)
\("="\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4x-1}=1\\\sqrt{4y-1}=1\\\sqrt{4z-1}=1\end{matrix}\right.\)\(\Leftrightarrow x=y=z=\dfrac{1}{2}\)
Cách 2: sử dụng BĐT
Ta có: \(1.\sqrt{4z-1}\le\frac{1}{2}\left(1+4z-1\right)=2z\)
\(\Rightarrow x+y\le2z\) (1)
Tương tự ta có: \(y+z\le2x\) (2) ; \(z+x\le2y\) (3)
Cộng vế với vế (1) và (2) \(\Rightarrow2y\le x+z\) (4)
Từ (3); (4) \(\Rightarrow2y=x+z\)
Hoàn toàn tương tự ta có: \(2z=x+y\) ; \(2x=y+z\)
\(\Rightarrow x=y=z\)
Thay vào pt ban đầu: \(2x=\sqrt{4x-1}\Leftrightarrow x=y=z=\frac{1}{2}\)
ĐKXĐ: ...
Lần lượt trừ vế với vế của từng pt ta được hệ mới:
\(\left\{{}\begin{matrix}x-z=\sqrt{4z-1}-\sqrt{4x-1}\\y-z=\sqrt{4z-1}-\sqrt{4y-1}\\x-y=\sqrt{4y-1}-\sqrt{4x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-z=\frac{4\left(z-x\right)}{\sqrt{4z-1}+\sqrt{4x-1}}\\y-z=\frac{4\left(z-y\right)}{\sqrt{4y-1}+\sqrt{4z-1}}\\x-y=\frac{4\left(y-x\right)}{\sqrt{4x-1}+\sqrt{4y-1}}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-z\right)\left(1+\frac{4}{\sqrt{4z-1}+\sqrt{4x-1}}\right)=0\\\left(y-z\right)\left(1+\frac{4}{\sqrt{4y-1}+\sqrt{4z-1}}\right)=0\\\left(x-y\right)\left(1+\frac{4}{\sqrt{4x-1}+\sqrt{4y-1}}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow x=y=z\)
Thay vào pt đầu:
\(2x=\sqrt{4x-1}\Leftrightarrow4x^2=4x-1\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow x=y=z=\frac{1}{2}\)
a, Áp dụng bất đẳng thức Holder cho 2 bộ số \(\left(x,y,z\right)\left(3;3;3\right)\) ta có:
\(\left(x+3\right)\left(y+3\right)\left(z+3\right)\ge\left(\sqrt[3]{xyz}+\sqrt[3]{3.3.3}\right)^3=\left(\sqrt[3]{xyz}+3\right)\)
\(\sqrt[3]{\left(x+3\right)\left(y+3\right)\left(z+3\right)}\ge3+\sqrt[3]{xyz}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}=3\sqrt{x}=\sqrt{2017}\)
\(\Rightarrow x=\frac{\sqrt{2017}}{3}\)
\(\Rightarrow\left(x,y,z\right)=\left(\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3}\right)\)
P/s: Không chắc cho lắm ạ.
Vũ Minh Tuấn, Hoàng Tử Hà, đề bài khó wá, Lê Gia Bảo, Aki Tsuki, Nguyễn Việt Lâm, Lê Thị Thục Hiền,
Học 24h, @tth_new, @Akai Haruma, Nguyễn Trúc Giang, Băng Băng 2k6
Help meeee, please!
thanks nhiều
a)\(\left\{{}\begin{matrix}\dfrac{10}{\sqrt{12x-3}}+\dfrac{5}{\sqrt{4y+1}}=1\\\dfrac{7}{\sqrt{12x-3}}+\dfrac{8}{\sqrt{4y+1}}=1\end{matrix}\right.\)
ĐK: \(x>\dfrac{1}{4};y>-\dfrac{1}{4}\), đặt \(a=\dfrac{1}{\sqrt{12x-3}};b=\dfrac{1}{\sqrt{4y+1}}\)với a,b>0
khi đó, ta có hệ phương mới \(\left\{{}\begin{matrix}10a+5b=1\\7a+8b=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}10a+5b=1\\7a+8b=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}80a+40b=8\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}45a=3\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\35.\dfrac{1}{15}+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\b=\dfrac{1}{15}\end{matrix}\right.\)
thay \(\dfrac{1}{\sqrt{12x-3}}=a\) hay \(\dfrac{1}{\sqrt{12x-3}}=\dfrac{1}{15}\Rightarrow\sqrt{12x-3}=15\Leftrightarrow12x-3=225\Leftrightarrow12x=228\Leftrightarrow x=19\left(TMĐK\right)\) thay \(\dfrac{1}{\sqrt{4y+1}}=b\) hay
\(\dfrac{1}{\sqrt{4y+1}}=\dfrac{1}{15}\Rightarrow\sqrt{4y+1}=15\Leftrightarrow4y+1=225\Leftrightarrow4y=224\Leftrightarrow y=56\left(TMĐK\right)\)
Vậy (x;y)=(9;56) là nghiệm duy nhất của hệ phương trình đã cho.
b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=4\\x\left(1+4y\right)+y=2\end{matrix}\right.\)
ĐK: x,y#0, khi đó \(\dfrac{1}{x}+\dfrac{1}{y}=4\Rightarrow x+y=4xy\)
Do đó \(x\left(1+4y\right)+y=2\Leftrightarrow x+4xy+y=2\Leftrightarrow x+x+y+y=2\Leftrightarrow2\left(x+y\right)=2\Leftrightarrow x+y=1\)
Mà \(4xy=x+y\Leftrightarrow4xy=1\Leftrightarrow xy=\dfrac{1}{4}\)
Vậy \(x+y=1;xy=\dfrac{1}{4}\)
Do đó x,y là nghiệm của phương trình:
\(t^2-t+\dfrac{1}{4}=0\)
\(\Delta=b^2-4ac=1-4.1.\dfrac{1}{4}=0\)
Phương trình có nghiêm kép \(x_1=x_2=-\dfrac{b}{2a}=-\dfrac{-1}{2}=\dfrac{1}{2}\)
\(\Rightarrow x=y=\dfrac{1}{2}\left(nhận\right)\)
Vậy (x;y)=\(\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) là nghiệm duy nhất của hệ phương trình đã cho.
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)
Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)
=> hpy vô nghiệm
c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)
Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt
\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)
với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)
đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !
Lời giải:
ĐK \(x,y,z\geq \frac{1}{4}\)
\(\text{HPT}\Rightarrow 2(x+y+z)=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(\sqrt{4x-1}=\sqrt{(4x-1).1}\leq \frac{4x-1+1}{2}=2x\)
Tương tự với các biểu thức còn lại.....
\(\Rightarrow \sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\leq 2(x+y+z)\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} 4x-1=1\\ 4y-1=1\\ 4z-1=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{1}{2}\\ y=\frac{1}{2}\\ z=\frac{1}{2}\end{matrix}\right.\)
Vậy HPT có nghiệm \((x,y,z)=\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)\)
x = y = z = 0,5