\(\hept{\begin{cases}x^3-y^3=4.\left(4x-y\right)\\y^2-5x^2=4\end{cases}}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2017

Ta có phương trình \(\hept{\begin{cases}x^3-y^3=4\left(4x-y\right)\left(1\right)\\y^2-5x^2=4\left(2\right)\end{cases}}\)

Thế phương trình (2)  vào phương trình (1) , ta có \(x^3-y^3=\left(y^2-5x^2\right)\left(4x-y\right)\Rightarrow x^3-y^3=4xy^2-y^3-20x^3+5x^2y\)

\(\Rightarrow21x^3-4xy^2-5x^2y=0\Rightarrow x\left(21x^2-5xy-4y^2\right)=0\)

TH1: x = 0 

Khi đó ta có \(y^2=4\Rightarrow\orbr{\begin{cases}y=2\\y=-2\end{cases}}\)

TH2: \(21x^2-5xy-4y^2=0\)

Với \(y=0\Rightarrow x=0\) (Không thỏa mãn phương trình). Vậy \(y\ne0\)

Chia hai vế phương trình cho y2, ta có \(\frac{21x^2}{y^2}-\frac{5x}{y}-4=0\Rightarrow\orbr{\begin{cases}\frac{x}{y}=\frac{4}{7}\\\frac{x}{y}=-\frac{1}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{4}{7}y\\x=-\frac{1}{3}y\end{cases}}\)

Với \(x=\frac{4}{7}y\Rightarrow y^2-5\left(\frac{4}{7}y\right)^2=4\Rightarrow-\frac{31}{49}y^2=4\) (Vô lý)

Với \(x=\frac{-1}{3}y\Rightarrow y^2-5\left(-\frac{1}{3}y\right)^2=4\Rightarrow\frac{4}{9}y^2=4\Rightarrow y^2=9\Rightarrow\orbr{\begin{cases}y=3\\y=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}}\) 

Vậy hệ có các nghiệm là (0; 2) , (0; - 2) , (-1; 3) , (1; -3)

16 tháng 1 2018

Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!

16 tháng 1 2018

Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ