Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x - y = xy
\(\Rightarrow\)x = xy + y = y . ( x + 1 )
\(\Rightarrow\)x : y = x + 1 ( y \(\ne\)0 )
Theo bài ra : x : y = x - y
\(\Rightarrow\)x + 1 = x - y
\(\Rightarrow\)y = -1
Thay y = -1 vào x - y = xy , ta được :
x - ( -1 ) = x . ( -1 )
x + 1 = -x
2x = -1
x = \(\frac{-1}{2}\)
Vậy ...
Ta có:
x - y = xy = x/y
Xét xy = x : y
=> y.y = x : x
=> y^2 = 1
=> y = 1
=> x - 1 = x (vô lí)
a)Ta có: \(14x=12y\Rightarrow\frac{x}{12}=\frac{y}{14}=\frac{x-y}{12-14}=\frac{-10,2}{-2}=5,1\)
\(\Rightarrow x=5,1.12=61,2\)
\(y=5,1.14=71,4\)
b) Ta có: \(\left(x-5\right)^{2016}-\left|y^2-4\right|=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{2016}=0\\y^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x-5=0\\y^2=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=5\\y=\pm2\end{cases}}}\)
Vậy....
a) \(3^{x+1}=243\)
\(\Leftrightarrow3^{x+1}=3^5\)
\(\Leftrightarrow x+1=5\Leftrightarrow x=4\)
b) \(\left(\frac{1}{2}\right)^{x+1}=\frac{1}{64}\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^{x+1}=\left(\frac{1}{2}\right)^6\)
\(\Leftrightarrow x+1=6\Leftrightarrow x=5\)
c) \(\frac{81}{3x}=9\)
\(\Leftrightarrow3x=9\Leftrightarrow x=3\)
d) \(2^{x+1}+2^{x+2}=192\)
\(\Leftrightarrow2^x.2+2^x.4=192\)
\(\Leftrightarrow2^x.6=192\Leftrightarrow2^x=32\Leftrightarrow x=5\)
e) Ta có : \(\hept{\begin{cases}\left(x-1\right)^{2020}\ge0\\\left(y+2\right)^{2022}\ge0\end{cases}\Rightarrow\left(x-1\right)^{2020}+\left(y+2\right)^{2020}\ge0}\)
Mà \(\left(x-1\right)^{2020}+\left(y+2\right)^{2022}=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^{2020}=0\\\left(y+2\right)^{2022}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Bài giải
a, \(3^{x+1}=243\)
\(3^{x+1}=3^5\)
\(\Rightarrow\text{ }x+1=5\)
\(\Rightarrow\text{ }x=4\)
b, \(\left(\frac{1}{2}\right)^{x+1}=\frac{1}{64}\)
\(\frac{1}{2^{x+1}}=\frac{1}{2^6}\)
\(2^{x+1}=2^6\)
\(\Rightarrow\text{ }x+1=6\)
\(\Rightarrow\text{ }x=5\)
c, \(\frac{81}{3x}=9\)
\(27x=81\)
\(x=3\)
d, \(2^{x+1}+2^{x+2}=192\)
\(2^{x+1}\left(1+2\right)=192\)
\(2^{x+1}\cdot3=192\)
\(2^{x+1}=64=2^6\)
\(\Rightarrow\text{ }x+1=6\)
\(\Rightarrow\text{ }x=5\)
e, \(\left(x-1\right)^{2020}+\left(y+2\right)^{2022}=0\)
Mà \(\hept{\begin{cases}\left(x-1\right)^{2020}\ge0\\\left(y+2\right)^{2022}\ge0\end{cases}}\) với mọi x,y nên \(\hept{\begin{cases}\left(x-1\right)^{2020}=0\\\left(y+2\right)^{2022}=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
\(\Rightarrow\text{ }x=1\text{ ; }y=-2\)
Ta có : \(\left|x+\frac{13}{14}\right|=-\left|x-\frac{3}{7}\right|\)
\(\Rightarrow\left|x+\frac{13}{14}\right|+\left|x-\frac{3}{7}\right|=0\)
Mà : \(\left|x+\frac{13}{14}\right|\ge0\forall x\)
\(\left|x-\frac{3}{7}\right|\ge0\forall x\)
Nên : \(\orbr{\begin{cases}\left|x+\frac{13}{14}\right|=0\\\left|x-\frac{3}{7}\right|=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{13}{14}=0\\x-\frac{3}{7}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{14}\\x=\frac{3}{7}\end{cases}}\)
Vì \(\left(3x-33\right)^{2016}\ge0;\left|y-7\right|\ge0\Leftrightarrow\left|y-7\right|^{2017}\ge0\)
=>\(\left(3x-33\right)^{2016}+\left|y-7\right|^{2017}\ge0\)
mà theo đề bài: \(\left(3x-33\right)^{2016}+\left|y-7\right|^{2017}\le0\)
=>\(\left(3x-33\right)^{2016}+\left|y-7\right|^{2017}=0\) <=>\(\left(3x-33\right)^{2016}=0;\left|y-7\right|^{2017}=0\)
- (3x-33)2016=0 <=> 3x-33=0 <=> 3x=33 <=> x=11
- |y-7|2017=0 <=> |y-7|=0 <=> y-7=0 <=> y=7
Vậy x=11 và y=7
sau 3 phút có kết quả tuy bạn http://olm.vn/hoi-dap/question/772291.html
Trả lời
Bạn xem tại:
Câu hỏi của Mai Ngọc - Toán lớp 7 - Học toán với OnlineMath