\(81-y^2=8\left(x-2016\right)^2\)

TÌM X, Y 
...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2018

Trả lời

Bạn xem tại:

Câu hỏi của Mai Ngọc - Toán lớp 7 - Học toán với OnlineMath

1 tháng 8 2017

x - y = xy

\(\Rightarrow\)x = xy + y = y . ( x + 1 )

\(\Rightarrow\)x : y = x + 1 ( y \(\ne\)0 )

Theo bài ra : x : y = x - y

\(\Rightarrow\)x + 1 = x - y

\(\Rightarrow\)y = -1

Thay y = -1 vào x - y = xy , ta được :

x - ( -1 ) = x . ( -1 )

x + 1 = -x

2x = -1

x = \(\frac{-1}{2}\)

Vậy ...

1 tháng 8 2017

Ta có:

x - y = xy = x/y

Xét xy = x : y

=> y.y = x : x

=> y^2 = 1

=> y = 1

=> x - 1 = x (vô lí)

5 tháng 11 2017

a)Ta có: \(14x=12y\Rightarrow\frac{x}{12}=\frac{y}{14}=\frac{x-y}{12-14}=\frac{-10,2}{-2}=5,1\)

\(\Rightarrow x=5,1.12=61,2\)

     \(y=5,1.14=71,4\)

b) Ta có: \(\left(x-5\right)^{2016}-\left|y^2-4\right|=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{2016}=0\\y^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x-5=0\\y^2=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=5\\y=\pm2\end{cases}}}\)

Vậy....

7 tháng 9 2020

a) \(3^{x+1}=243\)

\(\Leftrightarrow3^{x+1}=3^5\)

\(\Leftrightarrow x+1=5\Leftrightarrow x=4\)

b) \(\left(\frac{1}{2}\right)^{x+1}=\frac{1}{64}\)

\(\Leftrightarrow\left(\frac{1}{2}\right)^{x+1}=\left(\frac{1}{2}\right)^6\)

\(\Leftrightarrow x+1=6\Leftrightarrow x=5\)

c) \(\frac{81}{3x}=9\)

\(\Leftrightarrow3x=9\Leftrightarrow x=3\)

d) \(2^{x+1}+2^{x+2}=192\)

\(\Leftrightarrow2^x.2+2^x.4=192\)

\(\Leftrightarrow2^x.6=192\Leftrightarrow2^x=32\Leftrightarrow x=5\)

e) Ta có : \(\hept{\begin{cases}\left(x-1\right)^{2020}\ge0\\\left(y+2\right)^{2022}\ge0\end{cases}\Rightarrow\left(x-1\right)^{2020}+\left(y+2\right)^{2020}\ge0}\)

Mà \(\left(x-1\right)^{2020}+\left(y+2\right)^{2022}=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^{2020}=0\\\left(y+2\right)^{2022}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)

7 tháng 9 2020

                                                                  Bài giải

a, \(3^{x+1}=243\)

\(3^{x+1}=3^5\)

\(\Rightarrow\text{ }x+1=5\)

\(\Rightarrow\text{ }x=4\)

b, \(\left(\frac{1}{2}\right)^{x+1}=\frac{1}{64}\)

\(\frac{1}{2^{x+1}}=\frac{1}{2^6}\)

\(2^{x+1}=2^6\)

\(\Rightarrow\text{ }x+1=6\)

\(\Rightarrow\text{ }x=5\)

c, \(\frac{81}{3x}=9\)

\(27x=81\)

\(x=3\)

d, \(2^{x+1}+2^{x+2}=192\)

\(2^{x+1}\left(1+2\right)=192\)

\(2^{x+1}\cdot3=192\)

\(2^{x+1}=64=2^6\)

\(\Rightarrow\text{ }x+1=6\)

\(\Rightarrow\text{ }x=5\)

e, \(\left(x-1\right)^{2020}+\left(y+2\right)^{2022}=0\)

Mà \(\hept{\begin{cases}\left(x-1\right)^{2020}\ge0\\\left(y+2\right)^{2022}\ge0\end{cases}}\) với mọi x,y nên \(\hept{\begin{cases}\left(x-1\right)^{2020}=0\\\left(y+2\right)^{2022}=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

\(\Rightarrow\text{ }x=1\text{ ; }y=-2\)

10 tháng 7 2017

Ta có : \(\left|x+\frac{13}{14}\right|=-\left|x-\frac{3}{7}\right|\)

\(\Rightarrow\left|x+\frac{13}{14}\right|+\left|x-\frac{3}{7}\right|=0\)

Mà : \(\left|x+\frac{13}{14}\right|\ge0\forall x\)

      \(\left|x-\frac{3}{7}\right|\ge0\forall x\)

Nên : \(\orbr{\begin{cases}\left|x+\frac{13}{14}\right|=0\\\left|x-\frac{3}{7}\right|=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{13}{14}=0\\x-\frac{3}{7}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{14}\\x=\frac{3}{7}\end{cases}}\)

19 tháng 5 2017

Vì \(\left(3x-33\right)^{2016}\ge0;\left|y-7\right|\ge0\Leftrightarrow\left|y-7\right|^{2017}\ge0\)

=>\(\left(3x-33\right)^{2016}+\left|y-7\right|^{2017}\ge0\)

mà theo đề bài: \(\left(3x-33\right)^{2016}+\left|y-7\right|^{2017}\le0\)

=>\(\left(3x-33\right)^{2016}+\left|y-7\right|^{2017}=0\) <=>\(\left(3x-33\right)^{2016}=0;\left|y-7\right|^{2017}=0\)

  • (3x-33)2016=0 <=> 3x-33=0 <=> 3x=33 <=> x=11
  • |y-7|2017=0 <=> |y-7|=0 <=> y-7=0 <=> y=7

Vậy x=11 và y=7

19 tháng 5 2017

Ban ơi ở đây biểu thức nhỏ hơn hoặc bằng 0 nhé

7 tháng 12 2016

sau 3 phút có kết quả tuy bạn http://olm.vn/hoi-dap/question/772291.html