\(5\left(x^2+xy+y^2\right)\)=\(7\left(x+2y\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

5(x² + xy + y²) = 7(x + 2y) 
<=> 5[ x^2/4 + xy + y^2 + 3x^2/4] = 7.(x+2y) 
<=> 5[ (x/2 +y)^2 + 3x^2/4 ] = 7.(x+2y) 
<=> 5.[(x+2y)^2 +3x^2 ] = 28(x+2y) 
đặt a = x+2y ta có: 
5[ a^2 +3x^2 ] = 28a 
<=> 15x^2 = 28a - 5a^2 
nhận thấy Vế trái >= 0 => Vế Phải >=0 => 28a - 5a^2 >=0 => a(5a-28) <=0 => 0 <= a<= 28/5 
=> 0<= a<=5 
5[ a^2 +3x^2 ] = 28a : dễ thấy 28a chia hết cho 5 mà do(28;5) = 1 => a chia hết cho 5 
=> a = 5 hoặc a = 0 
nếu a = 0 ; x+ 2y = 0 thì 5[ a^2 +3x^2 ] = 28a <=> 3x^2 = 0 <=> x = 0 => y = 0 
nếu a = 5 ; x+2y = 5 rhì 5(25 + 3x^2) = 5 <=> 3x^2 +24 = 0 vô lý vì 3x^2 + 24 >0 
vậy pt có nghiệm nguên duy nhất x = y = 0

8 tháng 10 2017

a)\((\dfrac{5}{7}x^2y)^3:(\dfrac{1}{7}xy)^3\)

=\((\dfrac{5}{7}x^2y:\dfrac{1}{7}:x:y)^3\)

=(\(\dfrac{5}{7}.7.x^2:x.y:y)^3\)

=(5x)\(^3\)

=5\(^3\).x\(^3\)

=125.x\(^3\)

15 tháng 7 2019

bài 2: a bạn có thể thêm bớt y^2 vào vế bên phải

bài 2 c thì bạn có thể mở ngoặc ở vế phải rồi tính sau đó áp dụng hđt

15 tháng 7 2019

1: a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=7^2+2.7+37\) (Vì \(x-y=7\))

\(=100\)

Vậy \(A=100\)

b) Ta có: \(B=x^2+4y^2-2x+10+4xy-4y\)

\(=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

\(=5^2-2.5+10\)

\(=25\)

Vậy \(B=25\)

c) Ta có : \(C=\left(x-y\right)^2\)

\(=x^2-2xy+y^2\)

\(=\left(x^2+y^2\right)-2xy\)

\(=26-2.5\) (Vì \(x^2+y^2=26\) ; \(xy=5\))

\(=16\)

Vậy \(C=16\)

15 tháng 7 2019

2: a) \(\left(x+y\right)^2-y^2=x^2+2xy+y^2-y^2\)

\(=x^2+2xy\)

\(=x\left(x+2y\right)\) \(\left(dpcm\right)\)

b) \(\left(x^2+y^2\right)^2-2xy^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x-y\right)^2\left(x+y\right)^2\) \(\left(dpcm\right)\)

c) \(\left(x+y\right)^2=x^2+2xy+y^2\)

\(=\left(x^2-2xy+y^2\right)+4xy\)

\(=\left(x-y\right)^2+4xy\) \(\left(dpcm\right)\)

Chúc bn học tốt ✔✔✔

26 tháng 8 2021

Trả lời:

a, \(\left(x^2-2y\right)\left(x^4+2x^2y+4y^2\right)-x^3\left(x-y\right)\left(x^2+xy+y^2\right)+8y^3\)

\(=\left(x^2\right)^3-\left(2y\right)^3-x^3\left(x^3-y^3\right)+8y^3\)

\(=x^6-8y^3-x^6+x^3y^3+8y^3\)

\(=x^3y^3\)

b, \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3+7\)

\(=x^3-8-\left(x^3-3x^2+3x-1\right)+7\)

\(=x^3-8-x^3+3x^2-3x+1+7\)

\(=3x^2-3x\)

c, \(x\left(x+2\right)\left(2-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)

\(=x\left(4-x^2\right)+x^3+27\)

\(=4x-x^3+x^3+27\)

\(=4x+27\)

5 tháng 11 2024

\(^{ }\)

16 tháng 12 2019

Rút gọn giùm mik nha

25 tháng 7 2021

a, mình nghĩ đề là cm đẳng thức nhé 

\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)

Vậy ta có đpcm 

b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)

\(=-5y-9+xy=VP\)

Vậy ta có đpcm 

c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)

Vậy ta có đpcm