Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\((1-m)x = m^2 - 1\)
\(\left(+\right)1-m\ne0\Leftrightarrow m\ne1\)
Pt có nghiệm duy nhất :
\(x=\frac{m^2-1}{1-m}=\frac{\left(m-1\right)\left(m+1\right)}{1-m}=-m-1\)
\(\left(+\right)1-m=0\Leftrightarrow m=1\)
\(Pt\Leftrightarrow0x=0\)( luôn đúng )
Vậy \(m\ne1\)pt có nghiệm duy nhất \(x=-m-1\)
\(m=1\) pt đúng với mọi nghiệm \(x\in R\)
Bất phương trình tương đương với:
\(\left(m+2\right)x< m^2-4\)(1)
Với \(m+2=0\Leftrightarrow m=-2\)(1) tương đương với:
\(0x< 0\)(vô nghiệm)
Với \(m+2< 0\Leftrightarrow m< -2\)(1) tương đương với:
\(x>\frac{m^2-4}{m+2}=m-2\)
Với \(m+2>0\Leftrightarrow m>-2\) (1) tương đương với:
\(x< \frac{m^2-4}{m+2}=m-2\)
\(m^2x=m\cdot\left(x+2\right)-2\)
\(\Leftrightarrow x\left(m^2-m\right)-2m+2=0\)
*Nếu m=1 <=> m^2 - m = 0 \(\Leftrightarrow-2.1+2=0\left(Đ\right)\)
=> Với m =1 thì pt thỏa mãn với mọi x thuộc R
*Nếu \(m\ne1\Leftrightarrow x=\frac{2m-2}{m^2-m}\)
=> Với \(m\ne1\text{ thì }x=\frac{2m-2}{m^2-m}\)
Vậy ....
Để phương trình có nghiệm duy nhất thì m<>1
Để phương trình có vô số nghiệm thì m=1
Để phương trình vô nghiệm thì m=-1