Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Ta có: \(a\left(ax+b\right)=b^2\left(x-1\right)\)
\(\Leftrightarrow a^2x+ab=b^2x-b^2\)
\(\Leftrightarrow a^2x-b^2x=-b^2-ab\)
\(\Leftrightarrow x\left(a^2-b^2\right)=-b\left(b+a\right)\)
\(\Leftrightarrow x\left(b^2-a^2\right)=b\left(b+a\right)\)(1)
Nếu a=b thì (1) trở thành: \(0x=2b^2\)(vô nghiệm)
Nếu a=-b thì (1) trở thành: 0x=0(luôn đúng)
Nếu \(\left|a\right|\ne\left|b\right|\) thì \(x=\dfrac{b}{b-a}\)
1/x - 1/a + 1/b = (1 -1 +1)/(x -a +b) = 1/(x-a+b)
OK CHỨ BẠN____CHÚC HOK TỐT
\(\frac{1}{a+b-x}+\frac{1}{x}=1+\frac{a+b}{ab}\Leftrightarrow\frac{x+a+b-x}{a+b-x}=\frac{a+b}{ab}\Leftrightarrow\left(a+b\right)\left(\frac{1}{x\left(a+b-x\right)}-\frac{1}{ab}\right)=0\Rightarrow x\left(a+b-x\right)\)=>x=a &b
Điều kiện : x khác 1,-1,-a
\(\frac{a}{x+a}=\frac{\left(a-1\right)\left(x+1\right)+\left(x-1\right)}{x^2-1}=\frac{ax+a-x-1+x-1}{x^2-1}=\frac{ax+a-2}{x^2-1}\)
\(\Leftrightarrow ax^2-a=\left(ax+a-2\right)\left(x+2\right)=ax^2+3ax+2a-2x-4\)
\(\Leftrightarrow3ax+3a-2x-4=0\)
\(\Leftrightarrow\left(3a-2\right)x+\left(3a-4\right)=0\)
Biện luận theo phương trình ax+b=0 là ra.