Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{cases}\left(x^2-1\right)\left(x-2\right)\ge0\\x^2-\left(3a+1\right)x+a\left(2a+1\right)\le0\end{cases}\) (1)
Xét các bất phương trình thành phần
\(\left(x^2-1\right)\left(x-2\right)\ge0\) (a)
\(x^2-\left(3a+1\right)x+a\left(2a+1\right)\le0\) (b)
Ta có T(1)=T(a)\(\cap\) T(b)
Lập bảng xét dấy
\(f\left(x\right)=\left(x^2-1\right)\left(x-2\right)\)
x | -\(\infty\) -1 1 2 +\(\infty\) |
f(x) | - 0 + 0 - 0 + |
Từ bảng xét dấu ta được T(a) = \(\left[-1;1\right]\cup\left[2;+\infty\right]\)
Từ : \(x^2-\left(3a+1\right)x+a\left(2a+1\right)\) ta có các nghiệm x= a; x=2a+1
- Nếu \(a\le2a+1\Leftrightarrow a\ge-1\) thì T(b) = \(\left[a;2a+1\right]\)
Xét các trường hợp sau :
+ Trường hợp 1 :
\(\begin{cases}-1\le a\le1\\-1\le2a+1\le1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1\le a\le1\\0\le a\le0\end{cases}\) \(\Leftrightarrow\) \(-1\le a\le0\)
Ta có T(a)\(\cap\) T(b)= \(\left[a;2a+1\right]\)
+ Trường hợp 2
\(\begin{cases}-1\le a\le1\\1<2a+1<2\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1\le a\le1\\a\in\left\{0;\frac{1}{2}\right\}\end{cases}\) \(\Leftrightarrow\) \(-1\le a\le0\)
Ta có T(a)\(\cap\) T(b)= \(\left[a;1\right]\)
+ Trường hợp 3
\(\begin{cases}-1\le a\le1\\2\le2a+1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1\le a\le1\\\frac{1}{2}\le a\end{cases}\) \(\Leftrightarrow\) \(\frac{1}{2}\le a\le1\)
Ta có T(a)\(\cap\) T(b)= \(\left[a;1\right]\cup\left[2;2a+1\right]\)
+ Trường hợp 4
1<a<2 suy ra 2a+1>3>2. Khi đó ta có Ta có T(a)\(\cap\) T(b)= \(\left[2;2a+1\right]\)
+ Trường hợp 5 :
a\(\ge\)2 suy ra 2a+1 \(\ge\) a \(\ge\) 2. Khi đó T(a)\(\cap\) T(b)= \(\left[a;2a+1\right]\)
- Nếu 2a+1<a \(\Leftrightarrow\) a<-1 thì T(b) = \(\left[a;2a+1\right]\)
Khi đó ta có T(a)\(\cap\) T(b) = \(\varnothing\) nên (1) vô nghiệm
Từ đó ta kết luận :
+ Khi a<-1 hệ vô nghiệm T(1) =\(\varnothing\)
+ Khi \(-1\le a\le0\) hoặc \(a\ge2\) hệ có tập nghiệm T (1) = \(\left[a;2a+1\right]\)
+ Khi 0<a<\(\frac{1}{2}\) hệ có tập nghiệm T(1) = \(\left[a;1\right]\)
+ Khi \(\frac{1}{2}\)\(\le\)a \(\le\)1 hệ có tập nghiệm T(1) = \(\left[a;1\right]\cup\left[2;2a+1\right]\)
+ Khi 1<a<2, hệ có tập nghiệm T(1) =\(\left[2;2a+1\right]\)
Mình chưa học cách chứng minh mệnh đề nhưng mk chứng minh được hệ thức Vi-et:
\(ax^2+bx+c=0\)
\(\Delta=b^2-4ac\)
để phương trình có 2 nghiệm thì \(\Delta\ge0\)
\(\Rightarrow b^2-4ac\ge0\)
phương trình có 2 nghiệm là
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}\)
Ta có
\(x_1+x_2=\frac{-b+\sqrt{\Delta}}{2a}+\frac{-b-\sqrt{\Delta}}{2a}\)
\(=\frac{-2b}{2a}=-\frac{b}{a}\)
\(x_1.x_2=\frac{-b+\sqrt{\Delta}}{2a}.\frac{-b-\sqrt{\Delta}}{2a}\)
\(=\frac{\left(-b+\sqrt{\Delta}\right).\left(-b-\sqrt{\Delta}\right)}{2a.2a}\)
\(=\frac{b^2-\Delta}{4a^2}\)
\(=\frac{b^2-\left(b^2-4ac\right)}{4a^2}\)
\(=\frac{4ac}{4a^2}=\frac{c}{a}\)
a,\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)
ĐK: \(x+y\ge0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+\frac{2xy}{x+y}=1\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)
Đặt \(\hept{\begin{cases}x+y=a\\2xy=b\end{cases}\left(a\ge0\right)}\)
\(\left(1\right)\Leftrightarrow a^2-b+\frac{b}{a}=1\)
\(\Leftrightarrow a^3-ab-a+b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a^2+a-b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x+y=1\left(3\right)\\\left(x+y\right)^2+\left(x+y\right)-xy=0\left(4\right)\end{cases}}\)
Thay (3) vào (2) ta được
\(x^2-y=1\Leftrightarrow y=x^2-1\)
\(\Rightarrow1-x=x^2-1\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{cases}}\)
Giải (4)
Ta có \(\left(x+y\right)^2\ge4xy\Rightarrow\left(x+y\right)^2-xy>0\)
do đó (4) không xảy ra
Vậy..........
\(\hept{\begin{cases}y-2>0\\x+1< 0\end{cases}}\Rightarrow\hept{\begin{cases}y>2\\x< -1\end{cases}}\)
\(\begin{cases}ax+b=0\\bx+a=0\end{cases}\) (1)
Nếu a=0, b=0 thì (1) có dạng \(\begin{cases}0x+0=0\\0x+0=0\end{cases}\)
Hệ này có nghiệm là mọi \(x\in\)R
Nếu a=0, b\(\ne\)0 thì ax+b=0 vô nghiệm nên (1) cũng vô nghiệm
Nếu \(a\ne0\) thì ax+b=0 có nghiệm \(x=-\frac{b}{a}=x_1\)
Giá trị \(x_1\) này là nghiệm của (1) khi và chỉ khi nó thỏa mãn bx+a=0 hay là
\(b\left(-\frac{b}{a}\right)+a=0\) \(\Leftrightarrow\) \(b^2=a^2\) \(\Leftrightarrow\) \(\begin{cases}b=a\\b=-a\end{cases}\)
\(\Rightarrow\) \(\begin{cases}x_1=-1\\x=1_1\end{cases}\)
Ta có kết luận :
- Khi \(\begin{cases}a=0\\b\ne0\end{cases}\) hoặc \(\begin{cases}a\ne0\\b\ne\pm a\end{cases}\) thì hệ vô nghiệm
- Khi \(\begin{cases}a\ne0\\b=0\end{cases}\) thì hệ có nghiệm x=-1
- Khi \(\begin{cases}a\ne0\\b=a\end{cases}\) thì hệ có nghiệm x=1
- Khi \(\begin{cases}a=0\\b=0\end{cases}\) thì hệ có nghiệm là mọi x\(\in\)R