Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3\left(4x-1\right)-2x\left(5x+2\right)>8x-2\)
\(\Leftrightarrow12x-3-10x^2-4x>8x-2\)
\(\Leftrightarrow-10x^2>5\)
\(\Leftrightarrow x^2< \dfrac{-1}{2}\)(vô lí)
Vậy bất phương trình đã cho vô nghiệm.
h)
\(\dfrac{x+5}{x+7}-1>0\)
\(\Leftrightarrow\dfrac{x+5}{x+7}-\dfrac{x+7}{x+7}>0\)
\(\Leftrightarrow\dfrac{x+5-x-7}{x+7}>0\)
\(\Leftrightarrow\dfrac{-2}{x+7}>0\)
\(\Leftrightarrow x+7< 0\)
\(\Leftrightarrow x< -7\)
g)
\(\dfrac{4-x}{3x+5}\ge0\)
* TH1:
\(4-x\ge0\) và \(3x+5>0\)
\(\Leftrightarrow x\le4\) và \(x>\dfrac{-5}{3}\)
* TH2:
\(4-x\le0\) và \(3x+5< 0\)
\(\Leftrightarrow x\ge4\) và \(x< \dfrac{-5}{3}\) ( loại)
Vậy: \(-\dfrac{5}{3}< x\le4\)
bài 1:
b,\(\dfrac{x+2}{x}=\dfrac{x^2+5x+4}{x^2+2x}+\dfrac{x}{x+2}\)(ĐKXĐ:x ≠0,x≠-2)
<=>\(\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x^2+5x+4}{x\left(x+2\right)}+\dfrac{x^2}{x\left(x+2\right)}\)
=>\(x^2+4x+4=x^2+5x+4+x^2\)
<=>\(x^2-x^2-x^2+4x-5x+4-4=0\)
<=>\(-x^2-x=0< =>-x\left(x+1\right)=0< =>\left[{}\begin{matrix}x=0\left(loại\right)\\x+1=0< =>x=-1\left(nhận\right)\end{matrix}\right.\)
vậy...............
d,\(\left(x+3\right)^2-25=0< =>\left(x+3-5\right)\left(x+3+5\right)=0< =>\left(x-2\right)\left(x+8\right)=0< =>\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)
vậy............
bài 3:
g,\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-x-2}\)(ĐKXĐ:x khác -1,x khác 2)
<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-2x+x-2}\)
<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x\left(x-2\right)+\left(x-2\right)}\)
<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)
<=>\(\dfrac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{2\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)
=>\(4x-8-2x-2=x+3\)
<=>\(x=13\)
vậy..............
mấy ý khác bạn làm tương tụ nhé
chúc bạn học tốt ^ ^
a) \(\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}=\dfrac{36}{x^2-9}\)
\(\Rightarrow\dfrac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{36}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{36}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow\dfrac{\left(x+3\right)^2-\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{36}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow\left(x+3\right)^2-\left(x-3\right)^2=36\)
\(\Rightarrow\left(x^2+6x+9\right)-\left(x^2-6x+9\right)=36\)
\(\Rightarrow x^2+6x+9-x^2+6x-9=36\)
\(\Rightarrow12x=36\)
\(\Rightarrow x=\dfrac{36}{12}\)
Vậy x = 3
b) \(x^2-x-6=0\)
\(\Rightarrow x^2-3x+2x-6=0\)
\(\Rightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
c) \(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+17}{15}\)
\(\Rightarrow\dfrac{3\left(2x-1\right)}{15}-\dfrac{5\left(x-2\right)}{15}=\dfrac{x+17}{15}\)
\(\Rightarrow\dfrac{3\left(2x-1\right)-5\left(x-2\right)}{15}=\dfrac{x+17}{15}\)
\(\Rightarrow\dfrac{6x-3-5x+10}{15}=\dfrac{x+17}{15}\)
... Phần còn lại cũng tương tự như vậy thôi
Bài 2:
a, \(A=3x\left(2x-5y\right)+\left(3x-y\right)\left(-2x\right)-\dfrac{1}{2}\left(2-26xy\right)\)
\(=6x^2-15xy-6x^2+2xy-1+13xy\)
\(=-1\)
\(\Rightarrowđpcm\)
b, \(B=\left(2x-3\right)\left(4x+1\right)-4\left(x-1\right)\left(2x-1\right)-2x+5\)
\(=8x^2+2x-12x-3-4\left(2x^2-x-2x+1\right)-2x+5\)
\(=8x^2-10x+2-8x^2+4x+8x-4-2x\)
\(=2-4=-2\)
\(\Rightarrowđpcm\)
Ai lm giúp mk vs câu nào cũng được. Ai làm xong sớm nhất sẽ được tick
a)\(\dfrac{5}{2x-1}>0\)
ĐKXĐ: \(x\ne\dfrac{1}{2}\)
Để phân thức nhận giá trị lớn hơn 0 thì:\(2x-1>0\)\(\Leftrightarrow x>\dfrac{1}{2}\)
b) \(\dfrac{x-1}{2x^2+3}>0\)
Dễ dàng nhận thấy:
\(2x^2+3\ge3>0\) với \(\forall x\)
Để phân thức nhận giá trị lớn hơn 0 thì:
\(x-1>0\Leftrightarrow x>1\)
c)\(\dfrac{x-2}{x+3}>0\). ĐKXĐ: \(x\ne-3\)
Lập bảng xét dấu:
\(x\) | \(-3\) \(2\) |
\(x-2\) | \(-\) \(-\) \(0\) \(+\) |
\(x+3\) | \(-\) \(0\) \(+\) \(+\) |
\(\dfrac{x-2}{x+3}\) | \(+\) \(-\) \(+\) |
Vì \(\dfrac{x-2}{x+3}>0\) nên từ bảng xét dấu ta có:
\(x< -3\) hoặc \(x>2\)
d)\(\dfrac{5x^2+1}{x-3}< 0\) ĐKXĐ: \(x\ne3\)
Dễ dàng nhận thấy:
\(5x^2+1\ge1>0\) với \(\forall x\)
Để biểu thức nhận giá trị nhỏ hơn 0 thì:
\(x-3< 0\Leftrightarrow x< 3\)
b, pt \(\Leftrightarrow\)mx - 2=0
Nếu m=0 pt\(\Leftrightarrow\) -2=0 (vô lí)\(\Rightarrow\)m=2(loại)
Nếu m\(\ne\)0 pt có nghiệm x=\(\dfrac{2}{m}\)
Bạn tham khảo nhé