![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
( x + 2 ) ( x2 - 3x + 5 ) = ( x + 2 )
<=> x2 - 3x + 5 = 1
<=> x2 - 3x + 4 = 0
<=> x2 - 3x + 9/4 + 7/4 = 0
<=> ( x - 3/2 )2 = - 7/4 ( mâu thuẫn )
=> Pt vô nghiệm
\(\frac{x}{x-3}>1\)<=> \(\frac{x}{x-3}-1>0\)
<=>\(\frac{x-\left(x-3\right)}{x-3}>0\)<=>\(\frac{3}{x-3}>0\)
<=> x - 3 > 0 <=> x > 3
a)
\(x=-2,\frac{3+i\sqrt{7}}{2},\frac{3-i\sqrt{7}}{2}\)
b) \(x>3\)
Ký hiệu khoảng:
\(\left(3,\infty\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
( 3x - 5 )( x + 2 ) = x2 - 5x
<=> 3x2 + 6x - 5x - 10 - x2 + 5x = 0
<=> 2x2 + 6x - 10 = 0
Δ = b2 - 4ac = 62 - 4.2.(-10) = 36 + 80 = 116
Δ > 0 nên phương trình có hai nghiệm phân biệt :
\(x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{-6+\sqrt{116}}{4}=\frac{-3+\sqrt{29}}{2}\)
\(x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{-6-\sqrt{116}}{4}=\frac{-3-\sqrt{29}}{2}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\frac{-3\pm\sqrt{29}}{2}\right\}\)
\(\left(3x-5\right)\left(x+2\right)=x^2-5x\)
\(\Leftrightarrow3x^2+6x-5x-10=x^2-5x\)
\(\Leftrightarrow3x^2-x^2+x+5x-10=0\)
\(\Leftrightarrow2x^2+6x-10=0\)
\(\Leftrightarrow2\left(x^2+3x-5\right)=0\Leftrightarrow x^2+3x+5=0\)giải delta ta được :
\(x=\frac{-3\pm\sqrt{29}}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải :
\(\frac{5x-2}{3}+x=1+\frac{5-3x}{2}\)
\(\Leftrightarrow\frac{2\left(5x-2\right)+6x}{6}=\frac{6+3\left(5-3x\right)}{6}\)
\(\Leftrightarrow10x-4+6x=6+15-9x\)
\(\Leftrightarrow10x+6x+9x=6+15+4\)
\(\Leftrightarrow25x=25\Leftrightarrow x=1\).
Vậy tập nghiệm của phương trình đã cho là : S = {1}.
Một cách khác dài dòng hơn :)
\(\frac{5x-2}{3}+x=1+\frac{5-3x}{2}\)
\(\Leftrightarrow\frac{5}{3}x+\frac{-2}{3}+x=1+\frac{5}{2}+\frac{-3}{2}x\)
\(\Leftrightarrow\left(\frac{5}{3}x+x\right)+\left(\frac{-2}{3}\right)=\left(\frac{-3}{2}x\right)+\left(1+\frac{5}{2}\right)\)
\(\Leftrightarrow\frac{8}{3}x+\frac{-2}{3}=\frac{-3}{2}x+\frac{7}{2}\)
\(\Leftrightarrow\frac{8}{3}x+\frac{-2}{3}+\frac{3}{2}x=\frac{7}{2}\)
\(\Leftrightarrow\frac{25}{6}x+\frac{-2}{3}=\frac{7}{2}\)
\(\Leftrightarrow\frac{25}{6}x=\frac{7}{2}+\frac{2}{3}\)
\(\Leftrightarrow\frac{25}{6}x=\frac{25}{6}\)
\(\Leftrightarrow x=\frac{25}{6}:\frac{25}{6}=1\)
=> x = 1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(3x+5\right)\left(x+2\right)=x^2-5x\)
\(\Leftrightarrow3x^2+6x+5x+10=x^2-5x\)
\(\Leftrightarrow3x^2+11x+10-x^2+5x=0\)
\(\Leftrightarrow2x^2+16x+10=0\)
\(\Leftrightarrow2\left(x^2+8x+5\ne0\right)=0\)
Vậy phương trình vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
a)x2+(x-3)(3x-5)=9
<=>x2+3x2-5x-9x+15=9
,<=>4x2-14x+15=9
<=>4x2-14x+6=0
<=>4x2-12x-2x+6=0
<=>4x(x-3)-2(x-3)=0
<=>(x-3)(4x-2)=0
=> x-3=0 hoặc 4x-2=0 =>x=3 hoặc x=1/2
b)(3x+2)2=(x-4)2
<=>(3x+2)2-(x-4)2=0
<=>(3x+2-x+4)(3x+2+x-4)=0 (HẰNG ĐẲNG THỨC SỐ 3)
<=>(2x+6)(4x-2)=0
=>2x+6=0 hoặc 4x-2 => x=-3 hoặc x=1/2
c)Chưa ra thông cảm ahihi
c, x4+2x3-2x2+2x-3 = 0
<=> (x4-x3)+(3x3-3x2)+(x2-x)+(3x-3) = 0
<=> x3(x-1)+3x2(x-1)+x(x-1)+3(x-1) = 0
<=> (x-1)(x3+3x2+x+3) = 0
<=> (x-1)[x2(x+3)+(x+3)] = 0
<=> (x-1)(x+3)(x2+1) = 0
<=> x-1 =0 hoặc x+3=0 ( vì x2+1 khác 0 )
<=> x =1 hoặc x= -3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,3\left(2x-1\right)-2\left(1-x\right)=x+9\)
\(6x-3-2+2x=x+9\)
\(8x-5=x+9\)
\(8x-5-x-9=0\)
\(7x-14=0\)
\(7x=14\)
\(x=2\)
\(-3\left(2x-1\right)-2\left(1-x\right)=x+9\left(1-x\right)\)
\(-6x+3-2+2x=x+9-9x\)
\(-4x+1=-8x-9\)
\(-4x+1+8x+9=0\)
\(4x+10=0\)
\(4x=10\)
\(x=\frac{10}{4}=\frac{5}{2}\)
\(c,\left(1-x\right)\left(2x-1\right)-2\left(2-x\right)\left(2+x\right)=x=9\)
SAI ĐỀ
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 3(2x - 1) - 2(1 - x) = x + 9
<=> 6x - 3 - 2 + 2x = x + 9
<=> 6x + 2x - x = 9 + 3 + 2
<=> 7x = 14
<=> x = 14/7 = 2
vậy giải phương trình ta đc x = 2
b) -3(2x - 1) - 2(1 - x) = x + 9(1 - x)
<=> -6x + 3 - 2 + 2x = x + 9 - 9x
<=> -6x + 2x + 9x - x = 9 - 3 + 2
<=> 4x = 8
<=> x = 8/4 = 2
c) (1 - x)(2x - 1) - 2(2 - x)(2 + x) = x + 9
<=> 2x - 1 - 2x2 + x - 8 + 2x2 = x + 9
<=> 2x + x - x = 9 +1 +8
<=> 2x = 18
<=> x = 9
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^3+x^2+2x-16\ge0\)
\(\Leftrightarrow x^3-2x^2+3x^2-6x+8x-16\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)
Mà \(x^2+3x+8>x^2+3x+2,25=\left(x+1,5\right)^2\ge0\)
Cho nên \(x-2\ge0\)
\(\Leftrightarrow x\ge2\)
a,x^3-2x^2+3x^2-6x+8x-16>=0
(x^2+3x+8)(x-2)>=0
x^2+3x+8>0
=> để lớn hơn hoac bang 0 thì x-2 phải>=0
=>x>=2
b,hình như là vô nghiệm ko chắc chắn lắm
![](https://rs.olm.vn/images/avt/0.png?1311)
\((3x-2)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)
\(\Leftrightarrow3x-2=0\) hoặc \(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\)
- \(3x-2=0\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\) ;
- \(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\Leftrightarrow\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\Leftrightarrow10\left(x+3\right)=7\left(4x-3\right)\Leftrightarrow x=\frac{17}{6}\).
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{2}{3};\frac{7}{16}\right\}\).
\(\left(3x-2\right)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=2\\\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\10\left(x+3\right)=7\left(4x-3\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{17}{6}\end{cases}}\)
vậy x=2/3 hoặc x=17/6
đơn giản biểu thức : =-2x=5
=>-5/2
tick nhé -5/2 là âm 5 phần 2