Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Theo đề bài ta có bảng sau:
vận tốc(km/h) | thời gian(h) | quãng đường(km) | |
Lúc đi | \(\frac{x}{6}\) | \(6\) | \(x\) |
Lúc về | \(\frac{x}{5}+4\) | \(5\) | \(x\) |
Gọi chiều dài quãng đường AB là x\(\left(x\inℕ^∗\right)\)
Vận tốc lúc đi là:\(\frac{x}{6}\)(km/h)
Vận tốc lúc về là:\(\frac{x}{5}+4\)(km/h)
Ta có thời gian lúc về nhanh hơn thời gian lúc đi là:6-5=1(h)
Theo bảng trên ta có pt:\(\frac{x}{6}-\frac{x}{5}+4=1\)
Giải pt:\(\frac{x}{6}-\frac{x}{5}+4=1\)
\(\Leftrightarrow\frac{5x}{30}-\frac{6x}{30}+\frac{120}{30}=\frac{30}{30}\)
\(\Rightarrow5x-6x+120=30\)
\(\Leftrightarrow5x-6x=-120+30\)
\(\Leftrightarrow-x=-90\)
\(\Leftrightarrow x=90\left(tmđk\right)\)
Vậy chiều dài của quãng đường AB là 90km
#hoktot<3#
Gọi độ dài quãng đường AB là x
Theo đề, ta có phương trình:
x/12-x/30=3
hay x=60
đổi 48 phút = 4/5 giờ
gọi quãng đường AB là x (km) (x>0)
thời gian đi là: x/60 (h)
thời gian về là: x/50 (h)
vì thời gian đi ít hơn thời gian về 48 phút nên ta có phương trình:
x/50 - x/60 = 4/5
=> x = 240 km
Vậy quãng đường AB dài 240 km
Trả lời:
Đổi: \(30ph=\frac{1}{2}h\)
Gọi vận tốc xe máy lúc đi từ A đến B là: x ( km/h; x > 0 )
=> vận tốc xe máy lúc đi từ B về A là: x + 9 ( km/h )
thời gian xe máy đi từ A đến B là: \(\frac{90}{x}\)( giờ )
thời gian xe máy đi từ B về A là: \(\frac{90}{x+9}\)( giờ )
Theo bài ra, ta có:
\(\frac{90}{x}+\frac{90}{x+9}+\frac{1}{2}=5\)
\(\Leftrightarrow\frac{90}{x}+\frac{90}{x+9}=\frac{9}{2}\)
\(\Leftrightarrow\frac{90\left(x+9\right)}{x\left(x+9\right)}+\frac{90x}{x\left(x+9\right)}=\frac{9}{2}\)
\(\Leftrightarrow\frac{90x+810+90x}{x\left(x+9\right)}=\frac{9}{2}\)
\(\Leftrightarrow\frac{180x+810}{x\left(x+9\right)}=\frac{9}{2}\)
\(\Rightarrow2\left(180x+810\right)=9x\left(x+9\right)\)
\(\Leftrightarrow360x+1620=9x^2+81x\)
\(\Leftrightarrow9x^2+81x-360x-1620=0\)
\(\Leftrightarrow9x^2-279x-1620=0\)
\(\Leftrightarrow9\left(x^2-31x-180\right)=0\)
\(\Leftrightarrow x^2-31x-180=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=36\left(tm\right)\\x=-5\left(ktm\right)\end{cases}}\)
Vậy vận tốc xe máy lúc đi từ A đến B là: 36km/h.
Đổi 20 phút = 1/3 giờ
Thời gian người đó đi từ A đến B rồi quay về A là:
12 giờ 20 phút - 6 giờ 30 phút = 5 giờ 50 phút =35/6 (giờ)
Gọi độ dài quãng đường AB là x (km) (x > 0)
Ta có: x/25 +1/3 +x/30 =3/56
⇔6x+50+5x/150 =875/150
⇔11x+50=875⇔x=75(thỏa mãn)
Quãng đường AB dài 75 km.
Giải
Đổi: 20 phút = \(\frac{1}{3}\)giờ
Thời gian người đó đi từ A đến B rồi quay về A là:
12 giờ 20 phút - 6 giờ 30 phút = 5 giờ 50 phút = \(\frac{35}{6}\)giờ
Gọi độ dài quãng đường AB là x (km) ( với x > 0 )
Ta có: \(\frac{x}{25}+\frac{1}{3}+\frac{x}{30}=\frac{35}{6}\)
\(\Leftrightarrow\)\(\frac{6x+50+5x}{150}=\frac{875}{150}\)
\(\Leftrightarrow\)\(11x+50=875\)
\(\Leftrightarrow\)\(11x=825\)
\(\Leftrightarrow\)\(x=75\)
Vậy quãng đường AB dài 75km.
Gọi vận tốc từ A đến B là x (km/h)(x>0)
Theo bài ta có: \(\dfrac{90}{x}+\dfrac{90}{x+9}+\dfrac{1}{2}=5\)
=> \(\dfrac{90\left(x+9\right)}{x\left(x+9\right)}+\dfrac{90x}{x\left(x+9\right)}=\dfrac{9}{2}\)
=> \(\dfrac{90x+810+90x}{x^2+9x}=\dfrac{9}{2}\)
=> \(\dfrac{180x+810}{x^2+9x}=\dfrac{9}{2}\)
=> \(360x+1620=9x^2+91x\)
=> \(9x^2-269x-1620=0\)
=> x = 36
hoặc x = -5 (loại)
Vậy vtoc xe máy là 36km/h