Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có :
AB là tiếp tuyến tại B
AC là tiếp tuyến tại C
AB cắt AC tại A
\(\Rightarrow\widehat{ABO}=\widehat{ACO}=90^o\)và OA là p/g \(\widehat{BOC}\)
Xét tg ABOC có \(\widehat{ABO}+\widehat{ACO}=180^o\)Mà 2 góc này đối nhau
\(\Rightarrow\)ABOC là tg nt
b) Xét (O) có
\(\widehat{ABE}\)là góc tạo bởi tiếp tuyến AB và dây BE
\(\widehat{BDE}\)là góc nt chắn cung BE
\(\Rightarrow\widehat{ABE}=\widehat{BDE}=\frac{1}{2}sđ\widebat{BE}\)
Xét \(\Delta ABEvà\Delta ADB:\)
\(\widehat{BAD}\)chung
\(\widehat{ABE}=\widehat{BDE}\)
\(\Rightarrow\Delta ABE\infty\Delta ADB\left(gg\right)\)
\(\Rightarrow\frac{AB}{AD}=\frac{AE}{AB}\Rightarrow AB^2=AD.AE\)
c) Vì OA là p/g \(\widehat{BOC}\Rightarrow\widehat{BOA}=\widehat{COA}=\frac{\widehat{BOC}}{2}\)
Do ABOC là tg nt\(\Rightarrow\widehat{BOA}=\widehat{BCA}\)(cùng chắn cung AB)
Suy ra \(\widehat{AOC}=\widehat{ACB}\)
Câu 1:
Kẻ BH⊥AC và DK⊥AC
Dễ thấy \(\Delta AHB\sim\Delta AEC;\Delta AKD\sim\Delta AFC\)
Do đó \(\dfrac{AB}{AC}=\dfrac{AH}{AE};\dfrac{AD}{AC}=\dfrac{AK}{AF}\Leftrightarrow AB\cdot AE=AC\cdot AH;AD\cdot AF=AC\cdot AK\)
\(\Leftrightarrow AB\cdot AE+AD\cdot AF=AC\left(AH+AK\right)=AC^2\left(A\right)\)
Câu 2:
ABCD là htc nên \(AD=BC=AB\)
Ta có \(AD=AB=BC=\dfrac{BD}{\tan C}=\dfrac{6}{\sqrt{3}}=2\sqrt{3}\left(cm\right)\)
\(AH=AD\cdot\sin D=AD\cdot\sin C=2\sqrt{3}\cdot\sin60^0=3\left(cm\right)\)
\(DH=AD\cdot\cos D=\sqrt{3}\left(cm\right)\)
Áp dụng Talet: \(\dfrac{AI}{IH}=\dfrac{DH}{AB}=\dfrac{\sqrt{3}}{2\sqrt{3}}=\dfrac{1}{2}\Leftrightarrow AI=2IH\)
Mà \(AI+IH=AH=3\Leftrightarrow3IH=3\Leftrightarrow IH=1\Leftrightarrow AI=2\left(cm\right)\left(A\right)\)