giả...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2021

\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2021}\right)x=\frac{2020}{1}+\frac{2019}{2}+...+\frac{1}{2020}\)

\(\Leftrightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2021}\right)x=1+\left(\frac{2019}{2}+1\right)+...+\left(\frac{1}{2020}+1\right)\)

\(\Leftrightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2021}\right)x=\frac{2021}{2021}+\frac{2021}{2}+\frac{2021}{3}+...+\frac{2021}{2020}\)

\(\Leftrightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2021}\right)x=2021\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2021}\right)\)

\(\Leftrightarrow x=2021\)

21 tháng 8 2021

MÌNH CẦN GẤP

20 tháng 4 2017

undefined

20 tháng 4 2017

∆AHB và ∆ CKD có:

HB=KD.

AHB^=CKD^

AH=Ck

Nên ∆ AHB = ∆ CKD(c.g.c)

suy ra AB=CD.

tương tự ∆ CEB = ∆ AFD(c.g.c)

suy ra BC=AD.

b) ∆ABD và ∆CDB có:

AB=CD(câu a)

BC=AD(câu a)

BD chung.

Do đó ∆ABD=∆CDB(c.c .c)

Suy ra ˆABD=CDB^

Vậy AB // CD( hai góc so le trong bằng nhau)



19 tháng 4 2017

5 tháng 11 2021

Ta có:

\(a< b,c< d,m< n\)

\(\Rightarrow a+c+m< b+d+n\Rightarrow2a+2c+2m< a+b+c+d+m+n\)

\(\Rightarrow a+c+m< \frac{1}{2}\left(a+b+c+d+m+n\right)\)

\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\) ( đpcm )

4 tháng 11 2021

giúp mình với :V

DD
20 tháng 10 2021

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{90}{10}=9\)

\(\Leftrightarrow\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.5=45\end{cases}}\)

b) \(2x=3y\Leftrightarrow\frac{x}{15}=\frac{y}{10},2y=5z\Leftrightarrow\frac{y}{10}=\frac{z}{4}\)

suy ra \(\frac{x}{15}=\frac{y}{10}=\frac{z}{4}\).

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{4}=\frac{x-z}{15-4}=\frac{11}{11}=1\)

\(\Leftrightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=4.1=4\end{cases}}\)

c) \(\frac{x}{y}=\frac{3}{4}\Leftrightarrow\frac{x}{9}=\frac{y}{12},\frac{y}{z}=\frac{3}{5}\Leftrightarrow\frac{y}{12}=\frac{z}{20}\)

suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{2.9-3.12+20}=\frac{6}{2}=3\)

\(\Leftrightarrow\hept{\begin{cases}x=3.9=27\\y=3.12=36\\z=3.20=60\end{cases}}\)