\(\widehat{A}=42^0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2019

b, Có \(\widehat{C}=180^0-\widehat{A}-\widehat{C}=180^0-62^0-51^0=67^0\)

Kẻ AH \(\perp\)BC

\(\widehat{BAH}=90^0-\widehat{B}=90^0-51^0=39^0\)

Áp dụng ht trong tam giác vuông có:

\(BH=AB.sin\widehat{BAH}=10.sin39^0\approx6,29\left(cm\right)\)

\(AH=AB.sinB=10.sin51^0\)

\(sinC=\frac{AH}{AC}\)=> \(AC=\frac{AH}{sinC}=\frac{10.sin51^0}{sin67^0}\approx8,44\left(cm\right)\)

5 tháng 10 2019

a, Có \(\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-30^0-42^0=108^0\)

Kẻ CH\(\perp\)AB

Xét tam giác vuông AHC có góc A bằng 300

=> \(CH=\frac{AC}{2}=\frac{4}{2}=2\)( vì trong tam giác vuông ,cạnh đối diện với góc 300 bằng một nửa cạnh huyền)

Áp dụng ht trong tam giác vuông có:

\(AH=AC.cos30^0=4.\frac{\sqrt{3}}{2}=2\sqrt{3}\) (cm)

\(HB=HC.cotB=2.cot42^0\approx2,22\)(cm)

=> AB=AH+HB=\(2\sqrt{3}+2,22\) (cm)

Áp dụng ht trong tam giác vuông có:

\(HC=BC.sinB\)

=> \(BC=\frac{HC}{sinB}=\frac{2}{sin51^0}\approx2,574\) (cm)

Bài 2: 

\(\cos60^0=\dfrac{28^2+35^2-BC^2}{2\cdot28\cdot35}\)

\(\Leftrightarrow2009-BC^2=980\)

hay \(BC=7\sqrt{21}\left(cm\right)\)

31 tháng 7 2017

Kẻ ah vuông góc với BC suy ra AH=1/2AB=4cm,BH=√3/2AB=4√3cm(dùng sin,cos nhé)

Mà HC^2=AC^2-AH^2>>>Tính được AC.

Tính ra AC tính được các góc bằng sin,cos

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)

31 tháng 5 2017

Ôn tập Hệ thức lượng trong tam giác vuông

12 tháng 7 2017

a. Ta thấy \(\left(a\sqrt{5}\right)^2=\left(a\sqrt{3}\right)^2+\left(a\sqrt{2}\right)^2\Rightarrow AB^2=BC^2+AC^2\)

\(\Rightarrow\Delta ABC\)vuông tại C

b. \(\sin B=\frac{AC}{AB}=\frac{\sqrt{2}}{\sqrt{5}}=\frac{\sqrt{10}}{5};\cos B=\frac{CB}{AB}=\frac{\sqrt{3}}{\sqrt{5}}=\frac{\sqrt{15}}{5}\)

\(\tan B=\frac{AC}{AB}=\frac{\sqrt{6}}{3};\cot B=\frac{\sqrt{6}}{2}\)

\(\sin A=\cos B=\frac{\sqrt{15}}{5};\cos A=\sin B=\frac{\sqrt{10}}{5}\)

\(\tan A=\cot B=\frac{\sqrt{6}}{2};\cot A=\tan B=\frac{\sqrt{6}}{3}\) 

12 tháng 7 2017

Thanks bạn nhìu