K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

goi \(z=a+bi\)

\(\Rightarrow\)\(\left|z\right|+z=3+4i\Leftrightarrow\sqrt{a^2+b^2}+a+bi=3+4i\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{a^2+b^2}+a=3\\b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}3-a\ge0\\a^2+b^2=\left(3-a\right)^2\end{matrix}\right.\\b=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-7}{6}\\b=4\end{matrix}\right.\Rightarrow z=\dfrac{-7}{6}+4i\)

7 tháng 4 2017

Cảm ơn bạn nhiều nha hehehehehehe

21 tháng 6 2018

Đáp án B

23 tháng 7 2018

đặc \(z=a+bi\) (\(a;b\in R\)\(i^2=-1\))

ta có : \(Y=3\left|z\right|+4\left|z-4i\right|+5\left|z-3\right|\)

\(\Leftrightarrow Y=3\left|a+bi\right|+4\left|a+\left(b-4\right)i\right|+5\left|\left(a-3\right)+bi\right|\)

\(\Leftrightarrow Y=3\sqrt{a^2+b^2}+4\sqrt{a^2+\left(b-4\right)^2}+5\sqrt{\left(a-3\right)^2+b^2}\)

áp dụng bất đẳng thức Bunhiacopxki ta có :

\(Y\ge-\sqrt{\left(3^2+4^2+5^2\right)\left(a^2+b^2+a^2+\left(b-4\right)^2+\left(a-3\right)^2+b^2\right)}\)

\(\Leftrightarrow Y\ge-5\sqrt{2}.\sqrt{3a^2+3b^2-8b-6a+25}\)

\(\Leftrightarrow Y\ge-5\sqrt{2}.\sqrt{3\left(a-1\right)^2+\left(\sqrt{3}b-\dfrac{8}{2\sqrt{3}}\right)^2+\dfrac{50}{3}}\)

dấu "=" xảy ra khi \(\dfrac{3}{\sqrt{a^2+b^2}}=\dfrac{4}{\sqrt{a^2+\left(b-4\right)^2}}=\dfrac{4}{\sqrt{\left(a-3\right)^2}+b^2}\)

giải ra tìm được \(a;b\) rồi thay ngược trở lại nha

15 tháng 4 2016

giả sử z= a+ bi( a, b ϵ R)

từ giả thiết có ===> | a+ bi- 4i |+ |a+bi+4i|= 10

↔ |a+i(b-4)| +|a+(b+4)i|=10

↔ \(\sqrt{a^2+\left(b-4\right)^2}\) +\(\sqrt{a^2+\left(b+4\right)^2}\) =10

bình phương 2 vế, rút gọn thu được:

2a2+ 2b2+32+ 2\(\sqrt{\left(\left(a^2+\left(b-4\right)^2\right)\right).\left(\left(a^2+\left(b+4\right)^2\right)\right)}\)=100

bình phương tiếp:

 

16 tháng 6 2016

gọi z=x+yi ( x, y \(\in\) R)

ta có:\(\sqrt{\left(x^2+\left(y-4\right)^2\right)}+\sqrt{x^2+\left(y+4\right)^2}=10\)

<=> \(\sqrt{\left(x^2+\left(y-4\right)^2\right)}=10-\sqrt{x^2+\left(y+4\right)^2}\)

<=> \(x^2+\left(y-4\right)^2=100-20\sqrt{x^2+\left(y+4\right)^2}+x^2+\left(y+4\right)^2\)

<=> \(5\sqrt{\left(x^2+\left(y+4\right)^2\right)}=25+4y\)

<=> \(\begin{cases}y\ge\frac{-25}{4}\\25\left(x^2+\left(y+4\right)^2\right)=625+200y+16y^2\end{cases}\)

<=> \(\begin{cases}y\ge\frac{-25}{4}\\25x^2+25\left(y^2+8y+16\right)=625+200y+16y^2\end{cases}\)

<=>\(\begin{cases}y\ge\frac{-25}{4}\\9y^2+25x^2=225\end{cases}\)

<=>\(\begin{cases}y\ge\frac{-25}{4}\\\frac{y^2}{25}+\frac{x^2}{9}=1\end{cases}\)

ta thấy phương trình trên là một phương trình elip.

Kết luận: Vậy tập hợp điểm biểu diễn số phức Z thỏa mãn điều kiện trên là một hình elip có phương trình:

\(\frac{y^2}{25}+\frac{x^2}{9}=1\)

đúng thì tick cho mình biết nhé!!!haha

 

30 tháng 8 2019

Đặt z = a + bi. Từ  z + z = 3 + 4 i  suy ra

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

⇒ a 2 + 16 =  3 - a 2 = 9 − 6a +  a 2

⇒ 6a = −7 ⇒ a = −7/6

Vậy z = −7/6 + 4i

NV
19 tháng 6 2019

Đặt \(z=x+yi\)

\(\Rightarrow\sqrt{x^2+y^2}+x+yi=3+4i\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x^2+y^2}+x=3\\y=4\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+16}+x=3\Leftrightarrow\sqrt{x^2+16}=3-x\) (\(x\le3\))

\(\Leftrightarrow x^2+16=x^2-6x+9\Rightarrow6x=-7\Rightarrow x=-\frac{7}{6}\)

\(\Rightarrow z=-\frac{7}{6}+4i\)

26 tháng 5 2017

a) Ta có z. z  = z 2  nên từ  z  = z 3  ⇒  z 2  = z 4

Đặt z = a+ bi , suy ra:

a 4  + b 4  − 6 a 2 b 2  + 4ab( a 2  − b 2 )i =  a 2  +  b 2  (∗)

Do đó, ta có: 4ab( a 2  −  b 2 ) = 0 (∗∗)

Từ (∗∗) suy ra các trường hợp sau:

     +) a = b = 0 ⇒ z = 0

     +) a = 0, b ≠ 0: Thay vào (∗), ta có b 4  =  b 2  ⇒ b = 1 hoặc b = -1 ⇒ z = i hoặc z = -1

     +) b = 0, a ≠ 0: Tương tự, ta có a = 1 hoặc a = -1 ⇒ z = 1 hoặc z = -1

   +) a ≠ 0, b ≠ 0 ⇒  a 2  −  b 2  = 0⇒  a 2  =  b 2 , thay vào (∗) , ta có:

2 a 2 (2 a 2  + 1) = 0, không có a nào thỏa mãn (vì a ≠ 0 )

b) Đặt z = a + bi. Từ |z| + z = 3 + 4i suy ra

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

⇒  a 2  + 16 = ( 3 - a ) 2  = 9 − 6a +  a 2

⇒ 6a = −7 ⇒ a = −7/6

Vậy z = −7/6 + 4i

25 tháng 9 2018

Đáp án C

Phương pháp: Gọi  là số phức cần tìm. Sử dụng giả thiết để đưa ra một hệ điều kiện đẳng thức, bất đẳng thức cho a,b. Sử dụng điều kiện trên để đánh giá và tìm giá trị lớn nhất của P.

 Lời giải chi tiết.

Giả sử số phức thỏa mãn yêu cầu bài toán có dạng JCOcGBjLjsBk.png Khi đó ta có 

Từ giả thiết ta suy ra

Do đó   

Đẳng thức xảy ra khi và chỉ khi

Chú ý. Đối với bài toán liên quan tới cực trị học sinh thường mắc phải sai lầm là quên tìm giá trị để cực trị xảy ra. Điều này có thể dẫn tới việc tìm sai giá trị lớn nhất nhỏ nhất

17 tháng 9 2018

Giả sử số phức thỏa mãn yêu cầu bài toán có dạng z = a+bi Khi đó ta có

Đáp án C