
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


(1) + rút y từ pt (2) thay vào pt (1), ta được pt bậc hai 1 ẩn x, dễ rồi, tìm x rồi suy ra y
(2) + (3)
+ pt nào có nhân tử chung thì đặt nhân tử chung (thật ra chỉ có pt (2) của câu 2 là có nhân từ chung)
+ trong hệ, thấy biểu thức nào giống nhau thì đặt cho nó 1 ẩn phụ
VD hệ phương trình 3: đặt a= x+y ; b= căn (x+1)
+ khi đó ta nhận được một hệ phương trình bậc nhất hai ẩn, giải hpt đó rồi suy ra x và y

c: =>3x^2+3y^2=39 và 3x^2-2y^2=-6
=>5y^2=45 và x^2=13-y^2
=>y^2=9 và x^2=4
=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{x}=5\\\sqrt{x}-\sqrt{y}=-\dfrac{11}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y}=1+\dfrac{11}{2}=\dfrac{13}{2}\end{matrix}\right.\)
=>x=1 và y=169/4
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4-3=1\\-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9-2=7\end{matrix}\right.\)
=>x+1=11/9 và y+4=-11/19
=>x=2/9 và y=-87/19

Lời giải:
Lấy PT(1) trừ PT(2) theo vế ta thu được:
\(2(x^2-y^2)+\frac{1}{y^4}-\frac{1}{x^4}=0\)
\(\Leftrightarrow 2(x^2-y^2)+\frac{x^4-y^4}{x^4y^4}=0\)
\(\Leftrightarrow 2(x^2-y^2)+\frac{(x^2-y^2)(x^2+y^2)}{x^4y^4}=0\)
\(\Leftrightarrow (x^2-y^2)\left(2+\frac{x^2+y^2}{x^4y^4}\right)=0\)
Thấy rằng \(2+\frac{x^2y^2}{x^4y^4}\neq 0\) với mọi $x,y\neq 0$
Do đó \(x^2-y^2=0\Rightarrow x^2=y^2\Rightarrow x^4=y^4\)
Thay vào PT(1): \(2x^2+\frac{1}{x^4}=3\)
\(\Leftrightarrow 2x^6-3x^4+1=0\)
\(\Leftrightarrow 2x^4(x^2-1)-(x^4-1)=0\)
\(\Leftrightarrow 2x^4(x^2-1)-(x^2-1)(x^2+1)=0\)
\(\Leftrightarrow (x^2-1)(2x^4-x^2-1)=0\)
\(\Leftrightarrow (x^2-1)(x^2-1)(2x^2+1)=0\)
\(\Leftrightarrow (x^2-1)^2(2x^2+1)=0\Rightarrow x^2-1=0\) (dễ thấy \(2x^2+1\neq 0)\)
\(\Rightarrow x^2=1=y^2\)
\(\Rightarrow x=\pm 1; y=\pm 1\)
Vậy \((x,y)=(1,-1); (1,1); (-1,-1), (-1,1)\)

hỏi trước tí, bạn biết giải cái hệ này chứ?
\(\left\{{}\begin{matrix}2x+y=3\\2x-3y=1\end{matrix}\right.\)

a: \(\left\{{}\begin{matrix}3x-2y=1\\2x+4y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-4y=2\\2x+4y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8x=5\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\2y=3x-1=\dfrac{15}{8}-1=\dfrac{7}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\y=\dfrac{7}{16}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}4x-3y=1\\-x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-3y=1\\-4x+8y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=-1+2y=-1+2=1\end{matrix}\right.\)
c: \(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{4}{3}y=1\\\dfrac{1}{2}x-\dfrac{3}{4}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=3\\2x-3y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{41}{14}\\y=-\dfrac{5}{7}\end{matrix}\right.\)

Bài này rất đơn giản
\(y^2-2y+3=\frac{6}{x^2+2x+4}\Leftrightarrow\left(y^2-2y+1\right)+2-\frac{6}{x^2+2x+4}=0\)
\(\Leftrightarrow\left(y-1\right)^2+\frac{2\left(x^2+2x+4\right)-6}{x^2+2x+4}=0\Leftrightarrow\left(y-1\right)^2+\frac{2\left(x^2+2x+1\right)}{x^2+2x+4}=0\)
\(\Leftrightarrow\left(y-1\right)^2+\frac{2\left(x+1\right)^2}{x^2+2x+4}=0\)
Ta có: \(\left(y-1\right)^2\ge0;\frac{2\left(x+1\right)^2}{x^2+2x+4}\ge0\) với mọi x và y
dấu "=" xảy ra khi y=1; x=-1
Vậy (x,y)=(1,-1)
Tick mình nha
Ta có \(y^2-2y+3=y^2-2y+1+2=\left(y-1\right)^2+2\ge2\)
\(\dfrac{6}{x^2+2x+4}=\dfrac{6}{x^2+2x+1+3}=\dfrac{6}{\left(x+1\right)^2+3}\le2\)
Vậy \(y^2-2y+3=\dfrac{6}{x^2+2x+4}=2\Leftrightarrow\)\(\left\{{}\begin{matrix}y^2-2y+3=2\\\dfrac{6}{x^2+2x+4}=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left(y-1\right)^2+2=2\\\dfrac{6}{\left(x+1\right)^2+3}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=-1\end{matrix}\right.\)
\(y^2-2y+3=\left(y-1\right)^2+2\ge2\)
\(\dfrac{6}{x^2+2x+4}=\dfrac{6}{\left(x+1\right)^2+3}\le2\)
So ez