\(x^3+2x-3=\left(2x-1\right)\sqrt{x^2-x+3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2018

\(x^3+2x-3=\left(2x-1\right)\sqrt{x^2-x+3}\)

\(\Leftrightarrow x\left(x^2-x+3\right)+x^2-x+3-6=\left(2x-1\right)\sqrt{x^2-x+3}\)

Đặt \(\sqrt{x^2-x+3}=a\left(a>0\right)\),ta có

\(xa^2+a^2-6=\left(2x-1\right)a\)

\(\Leftrightarrow xa^2-2ax+a^2+a-6=0\)

\(\Leftrightarrow xa\left(a-2\right)+\left(a+3\right)\left(a-2\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(xa+a+3\right)=0\)

17 tháng 4 2020

biết làm rồi còn đăng làm chi câu k ak ko có đâu

25 tháng 11 2015

vào câu hỏi tương tự nhé bạn, với lại mình chưa học lớp 9

25 tháng 11 2015

\(1\text{) }a=\sqrt{2x^2-4x+3}\Rightarrow x^2-2x=\frac{a^2-3}{2}\)

Pt trở thành \(\frac{a^2-3}{2}+3=2a\)

\(3\text{) }pt\Leftrightarrow2\left(x^2-2x+4\right)+\left(x+2\right)=3\sqrt{x+2}\sqrt{x^2-2x+4}\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x+4}+\sqrt{x+2}\right)\left(\sqrt{x^2-2x+1}-\sqrt{x+2}\right)=0\)

b: \(\Leftrightarrow\left(x^2+5x+4\right)=5\sqrt{x^2+5x+28}\)

Đặt \(x^2+5x+4=a\) 

Theo đề, ta có \(5\sqrt{a+24}=a\)

=>25a+600=a2

=>a=40 hoặc a=-15

=>x2+5x-36=0

=>(x+9)(x-4)=0

=>x=4 hoặc x=-9

c: \(\Leftrightarrow x^2+5x=2\sqrt[3]{x^2+5x-2}-2\)

Đặt \(x^2+5x=a\)

Theo đề, ta có: \(a=2\sqrt[3]{a}-2\)

\(\Leftrightarrow\sqrt[3]{8a}=a+2\)

=>(a+2)3=8a

=>\(a^3+6a^2+12a+8-8a=0\)

\(\Leftrightarrow a^3+6a^2+4a+8=0\)

Đến đây thì bạn chỉ cần bấm máy là xong

13 tháng 2 2018

bạn tự làm đk nhé

pt <=> \(2\left(x^2-2x-2\right)=3\sqrt{\left(x+3\right)\left(x^2-x+1\right)}\\ \)

Đặt a=x^2-x+1

b=x+3

pt<=> \(2\left(a-b\right)=3\sqrt{ab}\)

\(2a-2b-3\sqrt{ab}=0\)

\(\left(2a-4\sqrt{ab}\right)+\left(\sqrt{ab}-2b\right)=0\)

\(2\sqrt{a}\left(\sqrt{a}-2\sqrt{b}\right)+\sqrt{b}\left(\sqrt{a}-2\sqrt{b}\right)=0\)

\(\left(a-2\sqrt{b}\right)\left(2\sqrt{a}+\sqrt{b}\right)=0\)

tới đây bạn tự giải nhé

NM
28 tháng 7 2021

a. ta có

\(x^2+2x-1+4x+2=\left(2x+1\right)\sqrt{x^2+2x+3}\)

\(\Leftrightarrow x^2+2x-1=\left(2x+1\right)\left[\sqrt{x^2+2x+3}-2\right]\Leftrightarrow x^2+2x-1=\left(2x+1\right).\frac{x^2+2x-1}{\sqrt{x^2+2x+3}+2}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2+2x+3}+2=2x+1\\x^2+2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2+2x+3}=2x-1\\x=-1\pm\sqrt{2}\end{cases}}}\)

với \(\sqrt{x^2+2x+3}=2x-1\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x^2+2x+3=4x^2-4x+1\end{cases}\Leftrightarrow x=\frac{3+\sqrt{15}}{3}}\)

b.\(3\sqrt{x-2}-\sqrt{x+6}=2x-6\Leftrightarrow\frac{8\left(x-3\right)}{3\sqrt{x-2}+\sqrt{x+6}}=2\left(x-3\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\3\sqrt{x-2}+\sqrt{x+6}=4\end{cases}}\)

với \(3\sqrt{x-2}+\sqrt{x+6}=4\Leftrightarrow10x-12+6\sqrt{\left(x-2\right)\left(x+6\right)}=16\)

\(\Leftrightarrow3\sqrt{x^2+4x-12}=14-5x\) xét điều kiện rồi bình phương thôi bạn nhé