\(x^2+\dfrac{4x^2}{(x+2)^2}=12\)

Giúp mình nhaa

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

Đáng lẽ không giúp đâu vì dài nhưng thôi đành cố gắng vậy :((

`x^2+(4x^2)/(x+2)^2=12(x ne -2)`

`<=>x^2-2.x.(2x)/(x+2)+(4x^2)/(x+2)^2=12-(4x^2)/(x+2)`

`<=>(x-(2x)/(x+2))^2=12-(4x^2)/(x+2)`

`<=>((x^2+2x-2x)/(x+2))^2=12-(4x^2)/(x+2)`

`<=>(x^2/(x+2))^2=12-(4x^2)/(x+2)`

`<=>(x^2/(x+2))^2+6((x^2)/(x+2))-2((x^2)/(x+2))-12=0`

`<=>((x^2)/(x+2))((x^2)/(x+2)+6)-2((x^2)/(x+2)+6)=0`

`<=>((x^2)/(x+2)+6)(x^2/(x+2)-2)=0`

`+)x^2/(x+2)+6=0` 

`<=>x^2+6x+12=0`

`<=>(x+3)^2+3=0` vô lý

`+)x^2/(x+2)-2=0`

`<=>x^2-2x-4=0`

`<=>(x-1)^2-5=0`

`<=>x=+-\sqrt{5}+1`

Vậy `S={\sqrt{5}+1,-\sqrt{5}+1}`

25 tháng 6 2018

a) \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\) (*)

đk: x >/ 0

(*) \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)

\(\Leftrightarrow13\sqrt{2x}=28\) \(\Leftrightarrow\sqrt{2x}=\dfrac{28}{13}\Leftrightarrow2x=\left(\dfrac{28}{13}\right)^2\Leftrightarrow x=\dfrac{392}{169}\left(N\right)\)

Kl: \(x=\dfrac{392}{169}\)

b) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\) (*)

đk: x >/ 5

(*) \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\Leftrightarrow x-5=4\Leftrightarrow x=9\left(N\right)\)

Kl: x=9

c) \(\sqrt{\dfrac{3x-2}{x+1}}=2\) (*)

Đk: \(\left[{}\begin{matrix}x< -1\\x\ge\dfrac{2}{3}\end{matrix}\right.\)

(*) \(\Leftrightarrow\dfrac{3x-2}{x+1}=4\Leftrightarrow3x-2=4x+4\Leftrightarrow x=-6\left(N\right)\)

Kl: x=-6

d) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (*)

Đk: \(x\ge\dfrac{4}{5}\)

(*) \(\Leftrightarrow\sqrt{5x-4}=2\sqrt{x+2}\Leftrightarrow5x-4=4x+8\Leftrightarrow x=12\left(N\right)\)

Kl: x=12

NV
10 tháng 10 2019

1/ ĐKXĐ:

\(\Leftrightarrow x^2+2x.\frac{x}{x-1}+\left(\frac{x}{x-1}\right)^2-\frac{2x^2}{x-1}=3\)

\(\Leftrightarrow\left(x+\frac{x}{x-1}\right)^2-\frac{2x^2}{x-1}-3=0\)

\(\Leftrightarrow\left(\frac{x^2}{x-1}\right)^2-\frac{2x^2}{x-1}-3=0\)

Đặt \(\frac{x^2}{x-1}=a\)

\(\Rightarrow a^2-2a-3=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{x^2}{x-1}=-1\\\frac{x^2}{x-1}=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x-1=0\\x^2-3x+3=0\end{matrix}\right.\)

2/ Pt dưới tương đương:

\(\left(2x+y\right)^2-2\left(2x+1\right)+1=0\)

\(\Leftrightarrow\left(2x+y-1\right)^2=0\)

\(\Leftrightarrow2x+y-1=0\Rightarrow y=1-2x\)

Thay vào pt trên:

\(x^2+x\left(1-2x\right)+2=0\)

\(\Leftrightarrow-x^2+x+2=0\)

3/ Chắc là \(P=4x^2+9y^2\)

\(15^2=\left(2.2x+3y\right)^2\le\left(2^2+1^2\right)\left(4x^2+9y^2\right)\)

\(\Rightarrow4x^2+9y^2\ge\frac{15^2}{5}=45\)

\(P_{min}=45\) khi \(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

b: \(=\dfrac{\left|x\right|+\left|x-2\right|+1}{2x-1}=\dfrac{x+x-2+1}{2x-1}=\dfrac{2x-1}{2x-1}=1\)

c: \(=\left|x-4\right|+\left|x-6\right|\)

=x-4+6-x=2

18 tháng 9 2018

a) điều kiện xác định : \(x\ge1\)

ta có : \(\sqrt{\dfrac{x-1}{4}}-3=\sqrt{\dfrac{4x-4}{9}}\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-3=\dfrac{2}{3}\sqrt{x-1}\)

\(\Leftrightarrow\dfrac{1}{6}\sqrt{x-1}=-3\left(vôlí\right)\) vậy phương trình vô nghiệm

b) điều kiện xác định \(x\ge3\)

ta có : \(\sqrt{x^2-4x+4}+\sqrt{x^2+6x+9}=x-3\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x+3\right)^2}=x-3\) \(\Leftrightarrow\left|x-2\right|+\left|x+3\right|=x-3\)

\(\Leftrightarrow x-2+x+3=x-3\Leftrightarrow x=-4\left(L\right)\) vậy phương trình vô nghiệm

c) điều kiện xác định : \(\left[{}\begin{matrix}x\ge\dfrac{3}{2}\\x< 1\end{matrix}\right.\)

ta có : \(\sqrt{\dfrac{2x-3}{x-1}}=2\) \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\Leftrightarrow2x-3=4x-4\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tmđk\right)\) vậy \(x=\dfrac{1}{2}\)

b: \(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-1\right)\left(x+2\right)}=\dfrac{-4x^2+11x-2}{\left(x+2\right)\left(x-1\right)}\)

\(\Leftrightarrow x^2+4x+4+4x^2-11x+2=0\)

\(\Leftrightarrow5x^2-7x+6=0\)

hay \(x\in\varnothing\)

c: \(\Leftrightarrow\left(3x^2+2\right)^2-5x\left(3x^2+2\right)=0\)

=>3x^2-5x+2=0

=>3x^2-3x-2x+2=0

=>(x-1)(3x-2)=0

=>x=2/3 hoặc x=1

Loại bỏ dấu căn bằng cách lũy thừa mỗi vế lên = cơ số của dấu căn.

\(x=\frac{1+i\sqrt{5}}{3};\frac{1-i\sqrt{5}}{3}\)

9 tháng 9 2020

đk: \(\forall x\inℝ\)

Ta có: \(\sqrt{x^2-2x+1}=\sqrt{4x^2-4x+1}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=\sqrt{\left(2x-1\right)^2}\)

\(\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=2x-1\\x-1=1-2x\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\3x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{3}\end{cases}}\)

28 tháng 5 2021

\(x\left(x^2+13x-6\right)=\left(x^2+8x-6\right)\sqrt{x^2+6x}\)

=> \(\left[x\left(x^2+13x+6\right)\right]^2=\left[\left(x^2+8x-6\right)\sqrt{x^2+6x}\right]^2\)

=> \(x^2\left(x^2+13x+6\right)^2=\left(x^2+8x-6\right)^2\left(x^2+6x\right)\)

<=> \(x^2\left(x^2+13x+6\right)-x\left(x+6\right)\left(x^2+8x-6\right)^2=0\)

<=> \(x\left(x^3+13x^2+6x-x^3-8x^2+6x-6x^2-48x+36\right)=0\)

<=> \(x\left(-x^2-36x+36\right)=0\)

28 tháng 5 2021

từ dòng ba xuống dòng bốn bạn ghi thiếu bình phương rùi