\(|x-2017|^{2017}+|x-2018|^{2018}=1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

Đặt \(2018=a\)

\(\Rightarrow\sqrt{a-1+\sqrt{x-1}}=a-x\)

\(\Leftrightarrow a-1+\sqrt{x-1}=\left(a-x\right)^2\)

\(\Leftrightarrow\sqrt{x-1}=x^2-2ax+a^2-a+1\)

\(\Leftrightarrow x-1=\left(x^2-2ax+a^2-a+1\right)^2\)

\(\Leftrightarrow\left[\left(x-a\right)^2-x+1\right]\left[\left(x-a\right)^2+x-2a+2\right]=0\)

26 tháng 9 2018

+)Nếu x < 2017 => x - 2018 = -1 => \(\left|x-2018\right|\)> 1

=> \(\left|x-2018\right|^{2018}\) >1

=> x < 2017 ko thỏa mãn

+) Nếu x = 2017 => x - 2018 = -1 => \(\left|x-2018\right|\) = 1

=> \(\left|x-2018\right|^{2018}=1\)

=> | x − 2017 | 2017 + | x − 2018 | 2018 = 1

=> x = 2017(TM)

+) Nếu 2017< x < 2018

=> 0 < x - 2017 < 1 và 2018 - x < 1

=>| x − 2017 | 2017 + | x − 2018 | 2018 < | x − 2017 |

+) |2018- x| ≤ | x-2017+2018-x| = 1

=> | x − 2017 | 2017 + | x − 2018 | 2018 < 1

=> 2017 < x < 2019 ko thỏa mãn

+) Nếu x = 2018 => x - 2017 = 1 và x - 2018 = 0

=>| x − 2017 | 2017 + | x − 2018 | 2018 = 1

=> x = 2018 thỏa mãn

+) Nếu x > 2018 => x - 2017 > 1

=> | x − 2017 | 2017 > 1

=>| x − 2017 | 2017 + | x − 2018 | 2018 > 1

=> x > 2018 ko thỏa mãn

Vậy x = 2018 là nghiệm của pt

x = 2017 là nghiệm của pt

16 tháng 10 2017

1 ( frac ) 2

16 tháng 10 2017

từ a+b=3 => b=3-a

mặt khác: \(a^3-b^2=-3\)

=>\(a^3-\left(3-a\right)^2+3=0\)

\(\Rightarrow a^3-9+6a-a^2+3=0\)

\(\Rightarrow a^3-a^2+6a-6=0\)

\(\Rightarrow a^2\left(a-1\right)+6\left(a-1\right)=0\)

\(\Rightarrow\left(a^2+6\right)\left(a-1\right)=0\)

\(\Rightarrow\hept{\begin{cases}a^2+6=0\\a-1=0\end{cases}\Rightarrow\hept{\begin{cases}a^2=-6\\a=1\end{cases}}}\)

=>a=1 vì \(a^2\ge0\)

=>\(\sqrt[3]{x-2}=1\)

\(\Rightarrow x-2=1\Rightarrow x=3\)

Vậy x=3

16 tháng 10 2017

b) ta có: Đặt :\(\sqrt[3]{x-2}=a;\)    Đk: \(x\ge-1\)

                \(\sqrt{x+1}=b;b\ge0\)

ta có:\(\hept{\begin{cases}a+b=3\\a^3-b^2=-3\end{cases}}\)

đến đây dùng pp thế là đc rồi nhé!

1 tháng 8 2018

a) Ta có: \(\left(\sqrt{2017}+\sqrt{2019}\right)^2=2017+2019+2\sqrt{2017.2019}\)

                                                              \(=4036+2\sqrt{\left(2018-1\right).\left(2018+1\right)}\)

                                                                \(=4036+2\sqrt{2018^2-1}< 4036+2\sqrt{2018^2}=2018.4=\left(2\sqrt{2018}\right)^2\)

Vậy x < y

19 tháng 4 2019

đặt x-2016=a

y-2017=b

z-2018=c

ta có\(\frac{1}{\sqrt{a}}-\frac{1}{a}+\frac{1}{\sqrt{b}}-\frac{1}{b}+\frac{1}{\sqrt{c}}-\frac{1}{c}=\frac{3}{4}\)

=>\(\left(\frac{1}{\sqrt{a}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{b}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{c}}-\frac{1}{2}\right)^2=0\)

=>\(a=b=c=4\)

còn lại tự lm nốt

19 tháng 4 2019

oke cao van duc

thank nhiều nha

hok tốt