\(x-1-\sqrt{x-2004}=2005\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2020

\(x-1-\sqrt{x-2004}=2005\) 

\(x-1-2005=\sqrt{x-2004}\) 

\(x-2006=\sqrt{x-2004}\) 

\(\sqrt{x-2004}=x-2006\) 

\(\hept{\begin{cases}x-2006\ge0\\x-2004=\left(x-2006\right)^2\end{cases}}\) 

\(\hept{\begin{cases}x\ge2006\\x-2004=x^2-4012x+4024036\end{cases}}\) 

\(\hept{\begin{cases}x\ge2006\\0=x^2-4012x-x+4024036+2004\end{cases}}\) 

\(\hept{\begin{cases}x\ge2006\\x^2-4013x+4026040=0\end{cases}}\) 

\(x\ge2006\) 

\(\orbr{\begin{cases}x=2008\\x=2005\end{cases}}\) ( nhận 2008 ) 

Vậy \(x=2008\)

21 tháng 9 2020

đk: \(x\ge2004\)

Ta có: \(x-1-\sqrt{x-2004}=2005\)

\(\Leftrightarrow x-2006=\sqrt{x-2004}\)

\(\Leftrightarrow\left(x-2006\right)^2=\left(\sqrt{x-2004}\right)^2\)

\(\Leftrightarrow x^2-4012x+4024036=x-2004\)

\(\Leftrightarrow x^2-4013x+4026040=0\)

\(\Leftrightarrow\left(x-2005\right)\left(x-2008\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2008=0\\x-2005=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2008\\x=2005\end{cases}}\)

Hoặc có thể đặt ẩn phụ \(x-2005=y\)

\(Pt\Leftrightarrow y-1=\sqrt{y+1}\)

\(\Leftrightarrow y^2-2y+1=y+1\)

\(\Leftrightarrow y^2-3y=0\)

\(\Leftrightarrow y\left(y-3\right)=0\)

\(\Leftrightarrow\left(x-2005\right)\left(x-2008\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2005\\x=2008\end{cases}}\)

11 tháng 9 2020

\(\Leftrightarrow x+y+z=2\sqrt{x-2}+2\sqrt{y+2003}+2\sqrt{z-2004}\)

\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2003-2\sqrt{y+2003}+1\right)\)

\(+\left(z-2004-2\sqrt{z-2004}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2003}-1\right)^2+\left(\sqrt{z-2004}-1\right)^2=0\)

Vì biểu thức trên là tổng của các số hạng không âm nên nó bằng 0 khi và chỉ khi các số hạng phải bằng 0

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-2003}=1\\\sqrt{z-2004}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2004\\z=2005\end{cases}}}\)

11 tháng 9 2020

\(ĐK:x\ge2,y\ge-2003,z\ge2004\)

Pt đã cho tương đương :

\(x+y+z-2\sqrt{x-2}-2\sqrt{y+2003}-2\sqrt{z-2004}=0\)

\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2003-2\sqrt{y+2003}+1\right)+\left(z-2004-2\sqrt{z-2004}+1\right)\)\(=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2003}-1\right)^2+\left(\sqrt{z-2004}-1\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=1\\y+2003=1\\z-2004=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=-2002\\z=2005\end{cases}}\)(Thỏa mãn)

25 tháng 11 2017

a) \(\sqrt{3x-4}\) + \(\sqrt{4x+1}\) = \(-16x^2 - 8x +1\) với

ĐKXĐ :

- Vế trái \(x \ge \frac{4}{3}\)

- Vế phải : \(-16x^2 - 8x +1\) \(\ge 0\) \(\Leftrightarrow \) \(x \le \frac{\sqrt{2}-1}{4}\) hoặc \(x \le \frac{-\sqrt{2}-1}{4}\)

Hai điều kiện trái ngược nhau

Vậy phương trình vô nghiệm .

25 tháng 11 2017

Ặc sai rồi .... hiha Thông cảm

NV
20 tháng 11 2018

\(\sqrt{1+2005^2+\dfrac{2005^2}{2006^2}}=\dfrac{1}{2006}\sqrt{2006^2+2005^2+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{\left(2006-2005\right)^2+2.2005.2006+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{1+2.2005.2006+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{\left(2005.2006+1\right)^2}=\dfrac{2005.2006+1}{2006}=2005+\dfrac{1}{2006}\)

Phương trình tương đương:

\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2005+\dfrac{1}{2006}+\dfrac{2005}{2006}\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2006\)

TH1: \(x\ge2\): \(x-1+x-2=2006\Rightarrow2x=2009\Rightarrow x=\dfrac{2009}{2}\)

TH2: \(x\le1\) : \(1-x+2-x=2006\Rightarrow-2x=2003\Rightarrow x=\dfrac{-2003}{2}\)

TH3: \(1< x< 2:\) \(x-1+2-x=2006\Rightarrow3=2006\) (vô nghiệm)

Vậy \(\left[{}\begin{matrix}x=\dfrac{2009}{2}\\x=\dfrac{-2003}{2}\end{matrix}\right.\)

23 tháng 7 2019

ĐK \(x\ge-2004\)

\(x^2-2004=-\sqrt{x+2004}\)

Đặt \(\sqrt{x+2004}=a\left(a\ge0\right)\)

=> \(\hept{\begin{cases}x^2-2004=-a\\a^2-2004=x\end{cases}}\)

=> \(\left(x+a\right)\left(x-a\right)+\left(a+x\right)=0\)

=> \(\left(x+a\right)\left(x-a+1\right)=0\)

=> \(\orbr{\begin{cases}x=-a\\x=a-1\end{cases}}\)

+ x=-a

=> \(x=-\sqrt{x+2004}\)

=> \(\hept{\begin{cases}x\le0\\x^2-x-2004=0\end{cases}}\)=> \(x=\frac{1-\sqrt{8017}}{2}\)(TmĐK)

\(x=a-1\)

=> \(x+1=-\sqrt{x+2004}\)

=> \(\hept{\begin{cases}x\le-1\\x^2+x-2003=0\end{cases}}\)=> \(x=\frac{-1-\sqrt{8013}}{2}\)(TTMĐK)

Vậy \(S=\left\{\frac{-1-\sqrt{8013}}{2};\frac{1-\sqrt{8017}}{2}\right\}\)

15 tháng 5 2018

a) \(\sqrt{x+3}-\sqrt{x-1}=\sqrt{2x+2}\)

Điều kiện: \(\hept{\begin{cases}x+3\ge0\\x-1\ge0\\2x+2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\ge1\\x\ge-1\end{cases}\Leftrightarrow x\ge1}\)

    \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-1}\right)^2=\left(\sqrt{2x+2}\right)^2\)

     \(\Leftrightarrow x+3-2\sqrt{\left(x+3\right)\left(x-1\right)}+x-1=2x+2\)

     \(\Leftrightarrow2x+2-2\sqrt{\left(x+3\right)\left(x-1\right)}=2x+2\)

     \(\Leftrightarrow-2\sqrt{\left(x+3\right)\left(x-1\right)}=0\)

     \(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

      \(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(l\right)\\x=1\left(n\right)\end{cases}}\)

Vậy \(S=\left\{1\right\}\)

     

15 tháng 10 2017

1.

\(x-6\sqrt{x}-\sqrt{x}+6=0\)

\(\Leftrightarrow\left(\sqrt{x}-6\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=36\\x=1\end{cases}}\)

2.

\(\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\\sqrt{x-3}=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}}\)

NV
5 tháng 11 2019

a/ ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1}=\sqrt{5x-1}+\sqrt{3x-2}\)

\(\Leftrightarrow x-1=8x-3+2\sqrt{\left(5x-1\right)\left(3x-2\right)}\)

\(\Leftrightarrow2-7x=2\sqrt{\left(5x-1\right)\left(3x-2\right)}\)

Do \(x\ge1\Rightarrow2-7x< 0\Rightarrow\left\{{}\begin{matrix}VP\ge0\\VT< 0\end{matrix}\right.\)

Phương trình vô nghiệm

b/ ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|=2\)

\(\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+1+1-\sqrt{x-1}\right|=2\)

Dấu "=" xảy ra khi và chỉ khi \(1-\sqrt{x-1}\ge0\Rightarrow x\le2\Rightarrow1\le x\le2\)

Vậy nghiệm của pt là \(1\le x\le2\)