K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2023

a) \(\sqrt[]{x^2-4x+4}=x+3\)

\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)

\(\Leftrightarrow\left|x-2\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)

\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)

\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)

\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)

Giải pt (1)

\(\Delta=9+32=41>0\)

Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)

Giải pt (2)

\(\Delta=9+48=57>0\)

Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)

Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)

6 tháng 7 2016

\(9x^2-6x+2=\left(3x-1\right)^2+1=t\ge1\)

\(Pt\Rightarrow\sqrt{t}+\sqrt{5t-1}=\sqrt{10-t}\)

\(\Leftrightarrow5t-1=10-t+t-2\sqrt{t\left(10t-1\right)}\)

\(\Leftrightarrow2\sqrt{t\left(10t-1\right)}+5t=11\)

\(\Rightarrow VT\ge VP\left(t\ge1\right)\Rightarrow t=1\Rightarrow x=\frac{1}{3}\)

7 tháng 10 2021
a. 6x³-9x²
14 tháng 9 2017

a) căn(2x+5) - căn(3-x) = x2 -5x + 8 
Điều kiện : \(-\frac{5}{2}\Leftarrow x\Leftarrow3\)
căn(2x+5) - căn(3-x) = x^2-5x+8 
\(\Leftrightarrow\)[căn(2x+5)-3]-[căn(3-x)-1]=x-5x+6 
nhân liên hợp 
\(\Leftrightarrow\)(2x+5-9) / [căn(2x+5)+3] -(3-x-1) / [căn (3-x)+1]=(x-2)(x-3) 
\(\Leftrightarrow\)(2x-4) / [căn (2x+5)+3] -(2-x) /  [ căn (3-x)+1]-(x-2)(x-3)=0 
\(\Leftrightarrow\)(x-2).M=0 
\(\Leftrightarrow\)x=2 hoặc M=0 
M=2 / [căn(2x+5)+3]+1 / [căn(3-x)+1]-x+3 

2/[can(2x+5)+3]+1/[can(3-x)+1]>0 voi moi x 
voi -5/2<=x<=3 <->3-x thuoc[0;11/2] 
nen M>0 
vay x=2 
b/ 2+ căn(3-8x) = 6x + căn(4x-1) 
dk[1/4;8/3] 
6x-2+căn(4x-1)-căn(3-8x)=0 
<->2(3x-1)+(4x-1-3+8x)/[căn(4x-1)+căn(... 
<->2(3x-1)+(12x-4)/[căn(4x-1)+căn(3-8x... 
<->2(3x-1)+4(3x-1)/[căn(4x-1)+căn(3-8x... 
<->(3x-1){2+4/[căn(4x-1)+căn(3-8x)]}=0 
2+4/[căn(4x-1)+căn(3-8x)>0 
nen 3x-1=0 
x=1/3

14 tháng 9 2017

 a)  căn(2x+5) - căn(3-x) = x^2-5x+8 
dkxd -5/2<=x<=3 
căn(2x+5) - căn(3-x) = x^2-5x+8 
<->[can(2x+5)-3]-[can(3-x)-1]=x^2-5x+6 
nhan lien hop 
<->(2x+5-9)/[can(2x+5)+3] -(3-x-1)/[can(3-x)+1]=(x-2)(x-3) 
<->(2x-4)/[can(2x+5)+3] -(2-x)/[can(3-x)+1]-(x-2)(x-3)=0 
<->(x-2).M=0 
<->x=2 hoac M=0 
M=2/[can(2x+5)+3]+1/[can(3-x)+1]-x+3 

2/[can(2x+5)+3]+1/[can(3-x)+1]>0 voi moi x 
voi -5/2<=x<=3 <->3-x thuoc[0;11/2] 
nen M>0 
vay x=2 
b/ 2+ căn(3-8x) = 6x + căn(4x-1) 
dk[1/4;8/3] 
6x-2+căn(4x-1)-căn(3-8x)=0 
<->2(3x-1)+(4x-1-3+8x)/[căn(4x-1)+căn(... 
<->2(3x-1)+(12x-4)/[căn(4x-1)+căn(3-8x... 
<->2(3x-1)+4(3x-1)/[căn(4x-1)+căn(3-8x... 
<->(3x-1){2+4/[căn(4x-1)+căn(3-8x)]}=0 
2+4/[căn(4x-1)+căn(3-8x)>0 
nen 3x-1=0 
x=1/3

a: \(\sqrt{x^2-4x+4}=3x+1\)

=>\(\sqrt{\left(x-2\right)^2}=3x+1\)

=>|x-2|=3x+1

=>\(\begin{cases}3x+1\ge0\\ \left(3x+1\right)^2=\left(x-2\right)^2\end{cases}\Rightarrow\begin{cases}x\ge-\frac13\\ \left(3x+1-x+2\right)\left(3x+1+x-2\right)=0\end{cases}\)

=>\(\begin{cases}x\ge-\frac13\\ \left(2x+3\right)\left(4x-1\right)=0\end{cases}\Rightarrow\begin{cases}x\ge-\frac13\\ x\in\left\lbrace-\frac32;\frac14\right\rbrace\end{cases}\)

=>\(x=\frac14\)

b:

ĐKXĐ: \(x^2-4x+1\ge0\)

=>\(x^2-4x+4-3\ge0\)

=>\(\left(x-2\right)^2\ge3\)

=>\(\left[\begin{array}{l}x-2\ge\sqrt3\\ x-2\le-\sqrt3\end{array}\right.\Rightarrow\left[\begin{array}{l}x\ge2+\sqrt3\\ x\le2-\sqrt3\end{array}\right.\)

\(\sqrt{x^2-4x+1}=x\)

=>\(\begin{cases}x\ge0\\ x^2-4x+1=x^2\end{cases}\Rightarrow\begin{cases}x\ge0\\ -4x+1=0\end{cases}\Rightarrow x=\frac14\)

c: \(\sqrt{x^2-2x+5}=x+3\)

=>\(\begin{cases}x+3\ge0\\ x^2-2x+5=\left(x+3\right)^2\end{cases}\Rightarrow\begin{cases}x\ge-3\\ x^2+6x+9=x^2-2x+5\end{cases}\)

=>\(\begin{cases}x\ge-3\\ x^2+6x+9-x^2+2x-5=0\end{cases}\Rightarrow\begin{cases}x\ge-3\\ 8x+4=0\end{cases}\Rightarrow x=-\frac12\)

d: \(\sqrt{x^2-10x+25}-2x=3\)

=>\(\sqrt{\left(x-5\right)^2}=2x+3\)

=>|x-5|=2x+3

=>\(\begin{cases}2x+3\ge0\\ \left(2x+3\right)^2=\left(x-5\right)^2\end{cases}\Rightarrow\begin{cases}x\ge-\frac32\\ \left(2x+3-x+5\right)\left(2x+3+x-5\right)=0\end{cases}\)

=>\(\begin{cases}x\ge-\frac32\\ \left(x+8\right)\left(3x-2\right)=0\end{cases}\Rightarrow x=\frac23\)

e:

ĐKXĐ: \(\left[\begin{array}{l}x\ge3\\ x\le1\end{array}\right.\)

\(\sqrt{x^2-4x+3}=x-2\)

=>\(\begin{cases}x-2\ge0\\ x^2-4x+3=\left(x-2\right)^2\end{cases}\Rightarrow\begin{cases}x\ge2\\ x^2-4x+3=x^2-4x+4\end{cases}\)

=>x∈∅

f: \(\sqrt{x^2-6x+9}=2x-1\)

=>\(\sqrt{\left(x-3\right)^2}=2x-1\)

=>|x-3|=2x-1

=>\(\begin{cases}2x-1\ge0\\ \left(2x-1\right)^2=\left(x-3\right)^2\end{cases}\Rightarrow\begin{cases}x\ge\frac12\\ \left(2x-1-x+3\right)\left(2x-1+x-3\right)=0\end{cases}\)

=>\(\begin{cases}x\ge\frac12\\ \left(x+2\right)\left(3x-4\right)=0\end{cases}\Rightarrow x=\frac43\)