\(\text{x^3+5x^2+17x+3=0}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017
 
 

a)    (2x + 1)(3x - 2) = (5x - 8)(2x + 1)

 <=> 6x2 - x - 2 = 10x2 - 11x - 8

<=>  6x2 - 10x2 - x + 11x -2 + 8 = 0

<=>  -4x2 + 10x + 6  = 0

<=> -2 (2x2 - 5x - 3) = 0

<=> 2x2 - 5x - 3 = 0 

<=> 2x2 - 6x + x - 3 = 0

<=> x (2x + 1) - 3 (2x + 1) = 0

<=> (x - 3) (2x + 1) = 0

* x - 3 = 0  => x = 3

* 2x + 1 = 0 => x = -1/2 

S = {-1/2; 3}

b) 4x2 – 1 = (2x +1)(3x -5)

<=> 4x2 – 1 - (2x +1)(3x -5) = 0

<=> (2x - 1) (2x + 1) - (2x + 1)(3x - 5) = 0

<=>  (2x + 1) (2x - 1 - 3x + 5) = 0

<=>  (2x + 1) (-x + 4) = 0

* 2x + 1 = 0  <=> x = -1/2

* -x + 4 = 0 <=> x = 4

S = {-1/2; 4}

c) (x + 1)2 = 4(x2 – 2x + 1)

<=> (x + 1)2 - 4(x2 – 2x + 1) = 0

<=> (x + 1)2 - 4(x2 – 1)2 = 0

* (x + 1)2 = 0   <=> x = -1

* 4(x2 - 1)2 = 0  <=> x = 1 và x = -1

S = {-1;  1}

d) 2x3 + 5x2 – 3x = 0

<=> x (2x2 + 5x - 3) = 0

<=> x (2x2 + 6x - x - 3) = 0

<=> x [x(2x - 1) + 3 (2x - 1)] = 0

<=> x (2x - 1) (x + 3) = 0

* x = 0

* 2x - 1 = 0  <=> x = 1/2

* x + 3 = 0  <=> x = -3

S = { -3; 0; 1/2}

 
 
1 tháng 8 2017

\(\frac{1}{x^2+5x+4}+\frac{1}{x^2+11x+28}+\frac{1}{x^2+17x+70}=\frac{3}{4x-2}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+10\right)}=\frac{3}{4x-2}\)

\(\Leftrightarrow3x^2+21x+36=0\)

\(\Leftrightarrow x=-3\)

20 tháng 11 2017

(1)Phương trình đã cho tương đương với:
3x27x+33x25x1=x22x23x+43x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
2x+43x27x+3+3x25x1=3x6x22+x23x+4⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4

(x2)(3x22+x23x+4+23x27x+3+3x25x1)=0⇔(x−2)(3x2−2+x2−3x+4+23x2−7x+3+3x2−5x−1)=0
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23x723≤x≤7

Phương trình đã cho tương đương với:

3x183x2+4+x67x1+(x6)(3x2+x2)3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0

(x6)(33x2+4+17x1+3x2+x2)⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0

x=6⇔x=6

vì với 23x723≤x≤7

thì: (33x2+4+17x1+3x2+x2)(33x−2+4+17−x−1+3x2+x−2)>0

13 tháng 7 2016

2) pt đề bài cho=0

<=> \(\left(x-1\right)^2\left(2x^2-x+2\right)\)=0

<=>\(\orbr{\begin{cases}x-1=0\left(1\right)\\2x^2-x+2=0\left(2\right)\end{cases}}\)

Từ 1 => x=1

từ 2 =>\(2\left(x^2-\frac{1}{2}x+1\right)\)

 =\(2\left[\left(x-\frac{1}{4}\right)^2+\frac{15}{16}\right]>0\)với mọi x

Nên pt 2 cô nghiệm

Vậy pt đề cho có nghiệm là 1

13 tháng 7 2016

1) \(x^3-3x^2+2=\left(x-1\right)\left(2^2-x+2\right)=0\)

23 tháng 11 2022

a: =>(x^2+4x-5)(x^2+4x-21)=297

=>(x^2+4x)^2-26(x^2+4x)+105-297=0

=>x^2+4x=32 hoặc x^2+4x=-6(loại)

=>x^2+4x-32=0

=>(x+8)(x-4)=0

=>x=4 hoặc x=-8

b: =>(x^2-x-3)(x^2+x-4)=0

hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)

c: =>(x-1)(x+2)(x^2-6x-2)=0

hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)

13 tháng 12 2018

\(x^5-5x^4+4x^3+4x^2-5x+1=0\)

\(\left(x^5-x^4\right)-\left(4x^4-4x^3\right)+\left(4x^2-4x\right)-\left(x-1\right)=0\)

\(x^4\left(x-1\right)-4x^3\left(x-1\right)+4x\left(x-1\right)-\left(x-1\right)=0\)

\(\left(x-1\right)\left(x^4-4x^3+4x-1\right)=0\)

\(\left(x-1\right)\left[\left(x^4-1\right)-\left(4x^3-4x\right)\right]=0\)

\(\left(x-1\right)\left[\left(x-1\right)\left(x^3+x^2+x+1\right)-4x\left(x^2-1\right)\right]=0\)

\(\left(x-1\right)\left[\left(x-1\right)\left(x^3+x^2+x+1\right)-4x\left(x-1\right)\left(x+1\right)\right]=0\)

\(\left(x-1\right)^2\left(x^3+x^2+x+1-4x^2-4x\right)=0\)

\(\left(x-1\right)^2\left(x^3-3x^2-3x+1\right)=0\)

\(\left(x-1\right)^2\left[\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\right]=0\)

\(\left(x-1\right)^2\left(x+1\right)\left(x^2-x+1-3x\right)=0\)

\(\left(x-1\right)^2\left(x+1\right)\left[\left(x^2-2.x.2+2^2\right)-3\right]=0\)

\(\left(x-1\right)^2\left(x+1\right)\left[\left(x-2\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\left(x-1\right)^2\left(x+1\right)\left(x-2-\sqrt{3}\right)\left(x-2+\sqrt{3}\right)=0\)

Đến đây b tự làm tiếp nhé~