Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5) \(ĐK:x\ge-\frac{3}{2}\)
\(x^3+4x-\left(2x+7\right)\sqrt{2x+3}=0\)
\(\Leftrightarrow\frac{x^3+4x}{2x+7}=\sqrt{2x+3}\Leftrightarrow\frac{x^3+4x}{2x+7}-3=\sqrt{2x+3}-3\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2+3x+7\right)}{2x+7}=\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2+3x+7}{2x+7}-\frac{2}{\sqrt{2x+3}+3}\right)=0\)
(không có nghiệm thực)
Vậy phương trình có 1 nghiệm duy nhất là 3
1) \(Pt\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\)( đk: \(x\le-3,x\ge0\)
Đặt \(t=\sqrt{x^2+3x},t\ge0\)
Pt trở thành: \(-t^2-3t+10=0\Leftrightarrow t=2\left(dot\ge0\right)\)
giải \(\sqrt{x^2+3x}=2\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)
\(\sqrt{\frac{-6}{1+x}}=5\)
\(\Leftrightarrow\sqrt{\frac{-6}{1+x}}^2=5^2\)
\(\Leftrightarrow\frac{-6}{1+x}=25\)
\(\Leftrightarrow x+1=\frac{-6}{25}\)
\(\Leftrightarrow x=\frac{-6}{25}-1=\frac{-31}{25}\)
\(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}=2\)
\(\Leftrightarrow\sqrt{x-49}=2\)
\(\Leftrightarrow x-49=4\Leftrightarrow x=53\)
Câu 1: ĐKXĐ: ...
\(\Leftrightarrow4x\left(3x-1\right)+x-1=4x\sqrt{3x+1}\)
\(\Leftrightarrow12x^2-3x-1-4x\sqrt{3x+1}=0\)
\(\Leftrightarrow16x^2-\left(4x^2+4x\sqrt{3x+1}+3x+1\right)=0\)
\(\Leftrightarrow16x^2-\left(2x+\sqrt{3x+1}\right)^2=0\)
\(\Leftrightarrow\left(2x-\sqrt{3x+1}\right)\left(6x+\sqrt{3x+1}\right)=0\)
\(\Leftrightarrow...\)
Câu 2:
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x^2-4\right)=y^3+2y\\x^2-4=-3y^2\end{matrix}\right.\)
\(\Leftrightarrow x\left(-3y^2\right)=y^3+2y\)
\(\Leftrightarrow y\left(y^2+3xy+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\Rightarrow...\\y^2+3xy+2=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow3xy=-y^2-2\Rightarrow x=\frac{-y^2-2}{3y}\)
\(\Rightarrow\left(\frac{y^2+2}{3y}\right)^2-1=3\left(1-y^2\right)\)
\(\Leftrightarrow\left(\frac{y^2-3y+2}{3y}\right)\left(\frac{y^2+3y+2}{3y}\right)=3\left(1-y^2\right)\)
\(\Leftrightarrow\frac{\left(y-1\right)\left(y-2\right)\left(y+1\right)\left(y+2\right)}{9y^2}=3\left(1-y^2\right)\)
\(\Leftrightarrow\frac{\left(y^2-1\right)\left(y^2-4\right)}{9y^2}=3\left(1-y^2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}y^2-1=0\\\frac{y^2-4}{9y^2}=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y^2-1=0\\28y^2=4\end{matrix}\right.\)
\(3x-1+\frac{x-1}{4x}=\sqrt{3x+1}\)
\(\Leftrightarrow\frac{4x\left(3x-1\right)+x-1}{4x}=\sqrt{3x+1}\)
\(\Leftrightarrow\frac{12x^2-4x+x-1}{4x}=\sqrt{3x+1}\)
\(\Leftrightarrow\frac{12x^2-3x-1}{4x}=\sqrt{3x+1}\)
\(\Leftrightarrow\frac{\left(12x^2-3x-1\right)^2}{16x^2}=3x+1\)
\(\Leftrightarrow\left(12x^2-3x-1\right)^2=16x^2\left(3x+1\right)\)
\(\Leftrightarrow144x^4-120x^3-31x^2+6x+1=0\)
\(\Leftrightarrow144x^4-144x^3+24x^3-24x^2-7x^2+7x-x+1=0\)
\(\Leftrightarrow144x^3\left(x-1\right)+24x^2\left(x-1\right)+7x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(144x^3+24x^2+7x-1\right)=0\)
Tìm được mỗi nghiệm thôi à :v
đk tự giải nhé
với x tjỏa mãn đk ta có
\(\sqrt{\frac{x^2+3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\Leftrightarrow\sqrt{x^3+3}=\frac{x^3+7x}{2\left(x+1\right)}\)
\(\Leftrightarrow\sqrt{x^3+3x}=\frac{x^3+3x+4x}{2\left(x+1\right)}\)
đặt \(\sqrt{x^3+3x}=a\)
ta có pt<=> \(a=\frac{a^2+4x}{2\left(x+1\right)}\Leftrightarrow2a\left(x+1\right)=a^2+4x\)
\(\Leftrightarrow2ax+2a=a^2+4x\Leftrightarrow a^2+4ax-2a-2ax=0\)
\(\Leftrightarrow\left(a^2-2ax\right)-\left(2a-4x\right)=0\Leftrightarrow a\left(a-2x\right)-2\left(a-2x\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(a-2x\right)=0\)
đến đây tự làm nhé