Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT tương đương \(2x-6=3\sqrt{x-2}-\sqrt{x+6}\)
Bình phương hai vế \(4x^2-34x+48=6\sqrt{\left(x-2\right)\left(x+6\right)}\)
Tiếp tục bình phương được phương trình tương đương \(\left(x-3\right)^2\left(x^2-11x+19\right)=0\)
P/s: Tham khảo nha!
Điều kiện xác định tự làm nha b.
Đặt \(\hept{\begin{cases}\sqrt{2+x}=a\\\sqrt{2-x}=b\end{cases}}\)
\(\Rightarrow a^2+4b^2=10-3x\)
Từ đây ta có pt trở thành
\(3a-6b+4ab-a^2-4b^2=0\)
\(\left(a-2b\right)\left(a-2b-3\right)=0\)
Tới đây đơn giản rồi b làm tiếp nhé
91 nhé
đặt \(\sqrt{4-x^2}=y\)
ta có phương trình \(\left(x+y\right)=2+3xy\)
bình lên rồi phân tích còn cái vừa nãy tớ nhầm bài khác xin lỗi
\(\sqrt{x+6-2\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)
\(\Rightarrow\sqrt{\left(\sqrt{x+2}-1\right)^2+3}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)
\(\Rightarrow\sqrt{\left(\sqrt{x+2}-1\right)^2+3}+\sqrt{x+2}=4\)
\(\Rightarrow\left(\sqrt{x+2}-1\right)^2+3=\left(4-\sqrt{x}+2\right)^2\)
\(\Rightarrow x+2-2\sqrt{x+2}+1+3=16-8\sqrt{x+2}+x+2\)
\(\Rightarrow x-2\sqrt{x+2}-x+8\sqrt{x+2}=12\)
\(\Rightarrow6\sqrt{x+2}=12\)
\(\Rightarrow\sqrt{x+2}=2\)
\(\Rightarrow x+2=4\)
\(\Rightarrow x=2\)
Vậy x=2
a/ ĐKXĐ: \(x\ge5\)
\(\Leftrightarrow\sqrt{5x^2-14x+9}=5\sqrt{x+1}+\sqrt{x^2-x-20}\)
\(\Leftrightarrow5x^2-14x+9=25x+25+x^2-x-20+10\sqrt{\left(x+1\right)\left(x^2-x-20\right)}\)
\(\Leftrightarrow4x^2-38x+4=10\sqrt{\left(x+1\right)\left(x+4\right)\left(x-5\right)}\)
\(\Leftrightarrow2x^2-19x+2=5\sqrt{\left(x+1\right)\left(x+4\right)\left(x-5\right)}\)
Đến đấy bí, chẳng lẽ lại bình phương giải pt bậc 4.
Nếu đề ban đầu là \(\sqrt{5x^2+14x+9}\) thì có thể tách được
b/ ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow x-1+\sqrt{5+\sqrt{x-1}}=5\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\ge0\\\sqrt{5+\sqrt{x-1}}=b>0\end{matrix}\right.\) \(\Rightarrow\sqrt{5+a}=b\Rightarrow5=b^2-a\)
Phương trình trở thành: \(a^2+b=b^2-a\)
\(\Leftrightarrow a^2-b^2+a+b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)+\left(a+b\right)=0\)
\(\Leftrightarrow\left(a-b+1\right)\left(a+b\right)=0\)
\(\Leftrightarrow a+1=b\) (do \(a+b>0\))
\(\Leftrightarrow a+1=\sqrt{a+5}\)
\(\Leftrightarrow a^2+2a+1=a+5\)
\(\Leftrightarrow a^2+a-4=0\Rightarrow a=\frac{-1+\sqrt{17}}{2}\)
\(\Rightarrow\sqrt{x-1}=\frac{-1+\sqrt{17}}{2}\Rightarrow x=\frac{11-\sqrt{17}}{2}\)
ĐK:\(\left\{{}\begin{matrix}x\ge2\\y\ge3\\z\ge5\end{matrix}\right.\)
\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\Leftrightarrow x-2\sqrt{x-2}+y-4\sqrt{y-3}+z-6\sqrt{z-5}+4=0\Leftrightarrow x-2-2\sqrt{x-2}+1+y-3-4\sqrt{y-3}+4+z-5-6\sqrt{z-5}+9=0\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\sqrt{x-2}-1=0\\\sqrt{y-3}-2=0\\\sqrt{z-5}-3=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=3\\y=7\\z=14\end{matrix}\right.\)(tm)
Vậy (x;y;z)=(3;7;14)
ĐKXĐ:\(\left\{{}\begin{matrix}x\ge2\\y\ge3\\z\ge5\end{matrix}\right.\)
Ta có x+y+z+4=\(2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
\(\Leftrightarrow\)\(x-2\sqrt{x-2}+y-4\sqrt{y-3}+z-6\sqrt{z-5}+4=0\)
\(\Leftrightarrow\)\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5+6\sqrt{z-5}+9\right)=0\)
\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
mà 3 biểu thức trên đều \(\ge\)0 nên để =0 thì
\(\)\(\sqrt{x-2}=1;\sqrt{y-3}=2;\sqrt{z-5=3}\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\\z=14\end{matrix}\right.\)
a/ ĐKXĐ: \(x\ge-1\)
\(\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-6\sqrt{x+1}+9}=2\sqrt{x+1-2\sqrt{x+1}+1}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-3\right)^2}=2\sqrt{\left(\sqrt{x+1}-1\right)^2}\)
\(\Leftrightarrow\sqrt{x+1}+1+\left|\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)
- Nếu \(\sqrt{x+1}\ge3\Leftrightarrow x\ge8\) pt trở thành:
\(\sqrt{x+1}+1+\sqrt{x+1}-3=2\sqrt{x+1}-2\)
\(\Leftrightarrow-2=-2\) (đúng)
- Nếu \(\sqrt{x+1}-1\le0\Leftrightarrow-1\le x\le0\) pt trở thành:
\(\sqrt{x+1}+1+3-\sqrt{x+1}=2-2\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{x+1}=-1< 0\) (vô nghiệm)
- Nếu \(0< x< 8\) pt trở thành:
\(\sqrt{x+1}+1+3-\sqrt{x+1}=2\sqrt{x+1}-2\)
\(\Leftrightarrow\sqrt{x+1}=3\Rightarrow x=8\left(l\right)\)
Vậy nghiệm của pt đã cho là \(x\ge8\)
b/ ĐKXĐ: \(x\ge\dfrac{-1}{4}\)
Đặt \(\sqrt{x+\dfrac{1}{4}}=t\ge0\Rightarrow x=t^2-\dfrac{1}{4}\) pt trở thành:
\(t^2-\dfrac{1}{4}+\sqrt{t^2+t+\dfrac{1}{4}}=2\)
\(\Leftrightarrow t^2-\dfrac{1}{4}+\sqrt{\left(t+\dfrac{1}{2}\right)^2}=2\)
\(\Leftrightarrow t^2+t+\dfrac{1}{4}-2=0\)
\(\Leftrightarrow4t^2+4t-7=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1+2\sqrt{2}}{2}\\t=\dfrac{-1-2\sqrt{2}}{2}< 0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=t^2-\dfrac{1}{4}=\left(\dfrac{-1+2\sqrt{2}}{2}\right)^2-\dfrac{1}{4}=2-\sqrt{2}\)
Vậy pt có nghiệm duy nhất \(x=2-\sqrt{2}\)
ĐKXĐ: \(-\frac{3}{2}\le x\le12\)
\(\Leftrightarrow x^2-2x\sqrt{2x+3}+2x+3+12-x-6\sqrt{12-x}+9=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+3}\right)^2+\left(\sqrt{12-x}-3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2x+3}=0\\\sqrt{12-x}-3=0\end{matrix}\right.\) \(\Rightarrow x=3\)
a)\(\sqrt{x+1}\left(x+4\right)=\left(x+18\right)\sqrt{6+x}-3x-40\)
\(pt\Leftrightarrow\sqrt{x+1}\left(x+4\right)-14=\left(x+18\right)\sqrt{6+x}-63-3x-9\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+4\right)^2-196}{\sqrt{x+1}\left(x+4\right)+14}=\frac{\left(x+18\right)^2\left(x+6\right)-3969}{\left(x+18\right)\sqrt{6+x}+63}-3\left(x-3\right)\)
\(\Leftrightarrow\frac{x^3+9x^2+24x-180}{\sqrt{x+1}\left(x+4\right)+14}-\frac{x^3+42x^2+540x-2025}{\left(x+18\right)\sqrt{6+x}+63}+3\left(x-3\right)=0\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2+12x+60\right)}{\sqrt{x+1}\left(x+4\right)+14}-\frac{\left(x-3\right)\left(x^2+45x+675\right)}{\left(x+18\right)\sqrt{6+x}+63}+3\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2+12x+60}{\sqrt{x+1}\left(x+4\right)+14}-\frac{x^2+45x+675}{\left(x+18\right)\sqrt{6+x}+63}+3\right)=0\)
Pt trong ngoặc to to kia vô nghiệm
Suy ra x=3
b)\(3\left(\sqrt{x+9}-\sqrt{x+1}\right)=4-4x\)
\(pt\Leftrightarrow\sqrt{x+9}-\sqrt{x+1}=\frac{4-4x}{3}\)
\(\Leftrightarrow2x+10-2\sqrt{\left(x+1\right)\left(x+9\right)}=\frac{16x^2-32x+16}{9}\)
\(\Leftrightarrow-2\sqrt{\left(x+1\right)\left(x+9\right)}=\frac{16x^2-32x+16}{9}-\left(2x+10\right)\)
\(\Leftrightarrow4\left(x+1\right)\left(x+9\right)=\frac{256x^4-1600x^3+132x^2+7400x+5476}{81}\)
\(\Leftrightarrow\frac{-64\left(x^2-5x-5\right)\left(4x^2-5x-8\right)}{81}=0\)
mỗi lần bình phương tự rút ra điều kiện mà khử nghiệm nhé :v
e ko bt giai
\(\sqrt{x^2+x}=6\Rightarrow x^2+x=6\)
\(\Leftrightarrow x\left(x+1\right)=6\)
\(\Rightarrow x;x+1\inƯ\left(6\right).\)