\(\sqrt{x^2-4x-5}\le3x-17\)  giúp mk vs ạ

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2021

\(\sqrt{x^2-4x+5}\le3x-17\)

bình phương 2 vế \(\Leftrightarrow x^2-4x+5\le9x^2-102x+289\)

\(\Leftrightarrow-8x^2+98x-294\le0\Leftrightarrow4x^2-21x-28x+147\ge0\)

\(\Leftrightarrow\left(4x-21\right)\left(x-7\right)\ge0\)

TH1 : \(\hept{\begin{cases}4x-21\ge0\\x-7\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{21}{4}\\x\ge7\end{cases}\Leftrightarrow}x\ge7}\)

TH2 : \(\hept{\begin{cases}4x-21\le0\\x-7\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le\frac{21}{4}\\x\le7\end{cases}\Leftrightarrow}x\le\frac{21}{4}}\)

Vậy tập nghiệm của bpt là S = { x | x >= 7 ; x =< 21/4 } 

4 tháng 4 2019

\(\sqrt{2x+1}-\sqrt{5-x}+x-6=0\)

\(\Leftrightarrow\left(\sqrt{2x+1}-3\right)+\left(1-\sqrt{5-x}\right)+x-4=0\)

\(\Leftrightarrow\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}+\frac{x-4}{\sqrt{5-x}+1}+x-4=0\)

\(\Leftrightarrow\left(x-4\right)\left(\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{5-x}+1}+1\right)=0\)

\(\Leftrightarrow x=4\)

16 tháng 2 2017

\(x^2+2x+4=3\sqrt{x^3+4x}\)đk \(x\ge0\)

\(x^2+2x+4=3\sqrt{x\left(x^2+4\right)}\)

đặt \(x^2+4=t\)

=> \(t+2x=3\sqrt{tx}\Leftrightarrow t^2-5tx+4x^2=0\)

\(\Leftrightarrow\left(t-x\right)\left(t-4x\right)=0\Leftrightarrow\orbr{\begin{cases}t=x\\t=4x\end{cases}}\)

nếu t=x phương trình trở thành \(x^2+4=x\Leftrightarrow x^2-x+4=0\Rightarrow ptvonghiem\)

nếu t=4x phương trinh trở thành \(x^2+4=4x\Leftrightarrow x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

vậy x=2 là nghiệm của pt 

15 tháng 2 2017

x=2

nhớ k cho nha

14 tháng 10 2016

B1 Tìm ĐKXĐ

B2 Đặt pt đã cho là pt (1)=>pt (1) <=>\(\frac{x+3}{\sqrt{4x-1}-\sqrt{3x-2}}\) =5

B3 Trục căn thứ ở mẫu => (1) <=> \(\sqrt{4x+1}+\sqrt{3x-2}\)=5

B4 Bình phương 2 vế  được (1)<=>\(26-7x\)=\(2\sqrt{12x^2-5x-2}\)

B5 Tiếp tục bình phương hai vế ta tìm được x=2 (Thỏa mãn)

14 tháng 10 2016

Bạn bình phương lên là ra

Kết quả X=2

27 tháng 5 2017

bạn chỉ cần cố gắng là làm được

AH
Akai Haruma
Giáo viên
1 tháng 3 2020

Lời giải:

ĐKXĐ: $x\geq 5$

PT $\Leftrightarrow (X-5)-2\sqrt{X-5}=0$

$\Leftrightarrow \sqrt{X-5}(\sqrt{X-5}-2)=0$

\(\Rightarrow \left[\begin{matrix} \sqrt{X-5}=0\\ \sqrt{X-5}-2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix} X=5\\ X=9\end{matrix}\right.\) (đều thỏa mãn)

Vậy.......

22 tháng 7 2018

\(b.\sqrt[3]{x-17}+\sqrt{x+8}=5\) \(\left(ĐK:x\ge-8\right)\)

Đặt: \(a=\sqrt[3]{x-17},b=\sqrt{x+8}\)

\(\Rightarrow x-17=a^3,x+8=b^2\)

Khi đó:

\(\left\{{}\begin{matrix}a+b=5\\a^3-b^2=x-17-x-8=-25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\a^3-b^2=-25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\\left(5-b\right)^3-b^2=-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b^3-14b^2+75b-150=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b^3-5b^2-9b^2+45b+30b-150=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b^2\left(b-5\right)-9b\left(b-5\right)+30\left(b-5\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\\left(b-5\right)\left(b^2-9b+30\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\\left[{}\begin{matrix}b=5\\b^2-9b+30=\left(b-\dfrac{9}{2}\right)^2+\dfrac{39}{4}=0\left(l\right)\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=5\end{matrix}\right.\)

Thế vào ta được:

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt[3]{x-17}=0\\\sqrt{x+8}=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-17=0\\x+8=25\end{matrix}\right.\) \(\Leftrightarrow x=17\left(n\right)\)

22 tháng 7 2018

Câu (a)

Huhu hack não quá đuy :v không biết làm đúng or sai nữa :v dù sao cũng là 20p của mừn đóCăn bậc hai. Căn bậc ba

28 tháng 11 2016

Ta có

\(x=\frac{\sqrt{4+2\sqrt{3}}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}-2}\)

\(=\frac{\sqrt{3+2\sqrt{3}+1}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3.4.\sqrt{5}-8}-2}\)

\(=\frac{\sqrt{3}+1-\sqrt{3}}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)-2}=\frac{1}{5-4-2}=-1\)

Thế vào ta được

\(P=\left(x^2+x+1\right)^{2013}+\left(x^2+x-1\right)^{2013}\)

\(=\left(1-1+1\right)^{2013}+\left(1-1-1\right)^{2013}=1-1=0\)

Loại bỏ dấu căn bằng cách lũy thừa mỗi vế lên = cơ số của dấu căn.

\(x=\frac{1+i\sqrt{5}}{3};\frac{1-i\sqrt{5}}{3}\)

9 tháng 9 2020

đk: \(\forall x\inℝ\)

Ta có: \(\sqrt{x^2-2x+1}=\sqrt{4x^2-4x+1}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=\sqrt{\left(2x-1\right)^2}\)

\(\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=2x-1\\x-1=1-2x\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\3x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{3}\end{cases}}\)