\(\sqrt{\left(5-2\sqrt{6}\right)^x}+\sqrt{\left(5+2\sqrt{6}\right)^x}=10\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2020

Nhận xét : \(\sqrt{\left(5-2\sqrt{6}\right)^x}.\sqrt{\left(5+2\sqrt{6}\right)^x}=1\)

Ta đặt \(\sqrt{\left(5-2\sqrt{6}\right)^x}=a\Rightarrow\sqrt{\left(5+2\sqrt{6}\right)^x}=\frac{1}{a}\)

Khi đó phương trình ban đầu trở thành :

\(a+\frac{1}{a}=10\Rightarrow a^2-10a+1=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=5+2\sqrt{6}\\a=5-2\sqrt{6}\end{cases}}\)

+) Với \(a=5+2\sqrt{6}\Rightarrow\sqrt{\left(5-2\sqrt{6}\right)^x}=5+2\sqrt{6}\)

\(\Leftrightarrow\left(5-2\sqrt{6}\right)^x=\left(5+2\sqrt{6}\right)^2=\left(\frac{1}{5-2\sqrt{6}}\right)^2\)

\(\Leftrightarrow x=-2\)

+) Với \(a=5-2\sqrt{6}\Rightarrow\sqrt{\left(5-2\sqrt{6}\right)^x}=5-2\sqrt{6}\)

\(\Leftrightarrow\left(5-2\sqrt{6}\right)^x=\left(5-2\sqrt{6}\right)^2\)

\(\Leftrightarrow x=2\)

Vậy \(x\in\left\{-2,2\right\}\) thỏa mãn đề.

15 tháng 2 2018

\(\left(5-2\sqrt{6}\right)^{\frac{x}{2}}+\left(5+2\sqrt{6}\right)^{\frac{x}{2}}=10\)

\(pt\Leftrightarrow\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^{2x}}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^{2x}}=10\)

\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)^x+\left(\sqrt{3}+\sqrt{2}\right)^x=10\)

\(\Leftrightarrow\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^x}+\left(\sqrt{3}+\sqrt{2}\right)^x=10\)

\(\Leftrightarrow\frac{1}{t}+t=10\left(t=\left(\sqrt{3}+\sqrt{2}\right)^x\right)\)

\(\Leftrightarrow t^2-10t+1=0\)\(\Leftrightarrow t=5\pm2\sqrt{6}\)

\(\Rightarrow5\pm2\sqrt{6}=\left(\sqrt{3}+\sqrt{2}\right)^x\)

\(\Leftrightarrow\left(\sqrt{3}+\sqrt{2}\right)^{\pm2}=\left(\sqrt{3}+\sqrt{2}\right)^x\)

\(\Rightarrow x=\pm2\). Vậy...

20 tháng 7 2018

1 like tức thì nào

8 tháng 12 2019

\(\left(\sqrt{2x+3}+2\right)\left(\sqrt{x+6}-\sqrt{x+1}\right)=5\)

\(ĐKXĐ:x\ge-1\).Nhận thấy \(\sqrt{x+6}-\sqrt{x+1}>0\)

\(\Leftrightarrow\left(\sqrt{2x+3}+2\right)\frac{\left(\sqrt{x+6}+\sqrt{x+1}\right)\left(\sqrt{x+6}-\sqrt{x+1}\right)}{\sqrt{x+6}-\sqrt{x+1}}=5\)

\(\Leftrightarrow\left(\sqrt{2x+3}+2\right)\frac{5}{\sqrt{x+6}-\sqrt{x+1}}=5\)

\(\Leftrightarrow\frac{\sqrt{2x+3}+2}{\sqrt{x+6}-\sqrt{x+1}}=1\)

\(\Leftrightarrow\sqrt{2x+3}+2-\sqrt{x+6}+\sqrt{x+1}=0\)

Th1:\(\sqrt{x+1}=2\Leftrightarrow x=3\left(thoaman\right)\)

Th2:\(\sqrt{x+1}-2\ne0\Leftrightarrow x\ne3\)

\(\Leftrightarrow\left(\sqrt{2x+3}-\sqrt{x+6}\right)+\left(2+\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\frac{x-3}{\sqrt{2x+3}+\sqrt{x+6}}+\frac{x-3}{\sqrt{x+1}-2}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{2x+3}+\sqrt{x+6}}+\frac{1}{\sqrt{x+1}-2}\right)=0\)

Tự lm tiếp nha

16 tháng 7 2018

bài 1:

a)\(\left(3-\sqrt{2}\right)\sqrt{7+4\sqrt{3}}\)

\(=\left(3-\sqrt{2}\right)\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=\left(3-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)\(do2>\sqrt{3}\)

\(=6+3\sqrt{3}-2\sqrt{2}-\sqrt{6}\)

b) \(\left(\sqrt{3}+\sqrt{5}\right)\sqrt{7-2\sqrt{10}}\)

\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)

\(=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)do\sqrt{5}>\sqrt{2}\)

\(=\sqrt{15}-\sqrt{6}+5-\sqrt{10}\)

c)\(\left(2+\sqrt{5}\right)\sqrt{9-4\sqrt{5}}\)

\(=\left(2+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)do\sqrt{5}>2\)

\(=5-4\)

\(=1\left(hđt.3\right)\)

d)\(\left(\sqrt{6}+\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)

\(=\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{8-2\sqrt{15}}\)

\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)do\sqrt{5}>\sqrt{3}\)

\(=5-3\)

\(=2\)

e)\(\sqrt{2}\left(\sqrt{8}-\sqrt{32}+3\sqrt{18}\right)\)

\(=\sqrt{2}\left(2\sqrt{2}-4\sqrt{2}+9\sqrt{2}\right)\)

\(=2\left(2-4+9\right)\)

\(=2.7=14\)

f)\(\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\)

\(=2-\sqrt{6-2\sqrt{5}}\)

\(=2-\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=2-\left(\sqrt{5}-1\right)\)

\(=2-\sqrt{5}+1\)

\(=3-\sqrt{5}\)

g)\(\sqrt{3}-\sqrt{2}\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\sqrt{3}-\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)\)

\(=\sqrt{3}-\sqrt{6}-2\)

h) \(\left(\sqrt{2}-\sqrt{3+\sqrt{5}}\right)\sqrt{2}+2\sqrt{5}\)

\(=\left(2-\sqrt{6+2\sqrt{5}}\right)+2\sqrt{5}\)

\(=\left(2-\sqrt{\left(\sqrt{5}+1\right)^2}\right)+2\sqrt{5}\)

\(=2-\left(\sqrt{5}+1\right)+2\sqrt{5}\left(do\sqrt{5}>1\right)\)

\(=2-\sqrt{5}-1+2\sqrt{5}\)

\(=1-\sqrt{5}\)

bài 2)

a) \(\sqrt{4x^2-4x+1}=5\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\)

\(\Leftrightarrow2x-1=5\)hoặc \(\Leftrightarrow2x-1=-5\)

\(\Leftrightarrow x=3\)hoặc \(\Leftrightarrow x=-2\)

Vậy x = 3 hoặc x = -2

1 tháng 11 2019

nhiều thế giải ko đổi đâu bạn

1 tháng 11 2019

vậy trả lời câu a thôi

24 tháng 5 2020

bạn làm dc k mà kêu mk

28 tháng 5 2020

mk là hsg toán mà. nhg con đó làm bth lắm

20 tháng 7 2016

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

21 tháng 7 2016

cảm ơn bạn nha ok