Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(x^4+\sqrt{x^2+2014}=2014\)
\(\Leftrightarrow4x^4+4\sqrt{x^2+2014}=8056\)
\(\Leftrightarrow4x^4=8056-4\sqrt{x^2+2014}\)
\(\Leftrightarrow4x^4+4x^2+1=4x^2+8056-4\sqrt{x^2+2014}+1\)
\(\Leftrightarrow\left(2x^2+1\right)^2=\left(2\sqrt{x^2+2014}-1\right)^2\)
Đến đây quen thuộc rồi nhé !
Câu a) bạn tham khảo ở link này mình đã làm : https://olm.vn/hoi-dap/detail/12190742084.html
a/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge-1\\x\le-5\end{matrix}\right.\)
Bình phương 2 vế:
\(x^2+3x+2+2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}+x^2+6x+5=2x^2+9x+7\)
\(\Leftrightarrow2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+3x+2=0\\x^2+6x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\left(l\right)\\x=-5\end{matrix}\right.\)
Vậy pt có 2 nghiệm \(x=-1;x=-5\)
b/ ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\Rightarrow a^2-6=3x+2\sqrt{2x^2+5x+3}-2\)
Phương trình trở thành:
\(a=a^2-6\Leftrightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=-2\left(l\right)\\a=3\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-3x\ge0\\4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{5}{3}\\x^2-50x+13=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=25+6\sqrt{17}\left(l\right)\\x=25-6\sqrt{17}\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất \(x=25-6\sqrt{17}\)
a) \(\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}=\sqrt{\left(x+1\right)\left(2x+7\right)}\)
\(ĐK\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge-2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}-\sqrt{\left(x+1\right)\left(2x+7\right)}=0\)
\(\Leftrightarrow\sqrt{\left(x+1\right)}\left(\sqrt{x+2}+\sqrt{x+5}-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\sqrt{x+2}+\sqrt{x+5}=\sqrt{2x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+2+x+5+2\sqrt{\left(x+2\right)\left(x+5\right)}=2x+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2\sqrt{\left(x+2\right)\left(x+5\right)}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=-5\end{matrix}\right.\)
vậy \(S=\left\{-1;-2;-5\right\}\)
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)
\(\Rightarrow3x+2\sqrt{2x^2+5x+3}=t^2-4\)
Pt trở thành:
\(t=t^2-4-2\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\) (\(x\le\frac{5}{3}\) )
\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\)
\(\Leftrightarrow x^2-50x+13=0\Rightarrow x=25-6\sqrt{17}\)
ĐK: \(x^2+5x+3\ge0\); \(x^2+5x-2\ge0\)(1)
\(\sqrt{x^2+5x+3}+\sqrt{x^2+5x-2}=5\)(2)
Dễ thấy
\(\sqrt{x^2+5x+3}\ne\sqrt{x^2+5x-2}\)
pt (2) <=> \(\frac{5}{\sqrt{x^2+5x+3}-\sqrt{x^2+5x-2}}=5\)
<=> \(\frac{1}{\sqrt{x^2+5x+3}-\sqrt{x^2+5x-2}}=1\)
<=>\(\sqrt{x^2+5x+3}-\sqrt{x^2+5x-2}=1\)
<=> \(\sqrt{x^2+5x+3}=1+\sqrt{x^2+5x-2}\)
<=> \(x^2+5x+3=1+x^2+5x-2+2\sqrt{x^2+5x-2}\)
<=> \(\sqrt{x^2+5x-2}=2\)
<=> \(x^2+5x-6=0\)
<=> x=1 ( tm đk (1) )
hoặc x=-6 ( tmđk (1))
√x2+5x+3 + √x2+5x-2 =5
<=> √x2+5x+3 = 5-√x2+5x-2
<=> x2+5x+3=25-10√x2+5x-2 +x2+5x-2
<=> 3=25-10√x2+5x-2 -2
<=> 3=23-10√x2+5x-2
<=> 10√x2+5x-2=23-3=20
<=> √x2+5x-2=2
<=> x2+5x-2=4
<=> x2+5x-2-4=0
<=> x2+5x-6=0
<=> x=-5(+-) √52-4.1.(-6) / 2.1
<=> x=-5(+-)√25+24 / 2
<=>x=-5+7 / 2 hoặc x=-5-7 / 2
<=> x=1 hoặc x=(-6)
\(3\sqrt{5x-1}-\sqrt{9x+7}=2\sqrt{x+2}\) \(\left(x\ge\dfrac{1}{5}\right)\)
\(\Leftrightarrow3\sqrt{5x-1}=\sqrt{9x+7}+2\sqrt{x+2}\)
\(\Leftrightarrow45x-9=13x+15+4\sqrt{9x^2+25x+14}\)
\(\Leftrightarrow8x-6=\sqrt{9x^2+25x+14}\)
\(\Leftrightarrow\left\{{}\begin{matrix}8x-6\ge0\\64x^2-96x+36=9x^2+25x+14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\\left[{}\begin{matrix}x=2\left(n\right)\\x=\dfrac{1}{5}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy x = 2
Bài này liên hợp cũng được :"> nhưng không biết biện luận thế nào cho pt kia vô no TT.TT
\(pt\Leftrightarrow\left(2\sqrt{x+2}-4\right)+\left(\sqrt{9x+7}-5\right)+\left(9-3\sqrt{5x-1}\right)=0\)
Bài 1:
ĐKXĐ: $-2\leq x\leq 2$
Đặt $\sqrt{2-x}=a; \sqrt{2+x}=b(a,b\geq 0)$
Ta có: \(\left\{\begin{matrix} a+b+ab=2\\ a^2+b^2=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=2-ab\\ (a+b)^2-2ab=4\end{matrix}\right.\)
\(\Rightarrow (2-ab)^2-2ab=4\)
\(\Leftrightarrow (ab)^2-6ab=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=6\end{matrix}\right.\)
Nếu $ab=0\Rightarrow a+b=2$. Theo định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-2X=0\Rightarrow (a,b)=(0,2); (2,0)$
$\Rightarrow x=2$
Nếu $ab=6\Rightarrow a+b=-4$. Theo định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2+4X+6=0$ (pt này vô nghiệm)
Vậy $x=2$
Bài 2:
ĐK: $x\geq \frac{-1}{3}
PT \(\Leftrightarrow \sqrt{5x+7}=\sqrt{x+3}+\sqrt{3x+1}\)
\(\Rightarrow 5x+7=4x+4+2\sqrt{(x+3)(3x+1)}\)
\(\Leftrightarrow x+3=2\sqrt{(x+3)(3x+1)}\)
\(\Leftrightarrow \sqrt{x+3}(\sqrt{x+3}-2\sqrt{3x+1})=0\)
Vì $x\geq \frac{-1}{3}$ nên $\sqrt{x+3}\neq 0$
Do đó $\sqrt{x+3}-2\sqrt{3x+1}=0$
$\Rightarrow x+3=4(3x+1)$
$\Rightarrow x=-\frac{1}{11}$ (thỏa mãn)
Vậy..........
\(\sqrt{5x+3}=\sqrt{3-\sqrt{2}}\)
\(\Leftrightarrow\sqrt{5x+3}^2=\sqrt{3-\sqrt{2}}^2\)
\(\Leftrightarrow5x+3=3-\sqrt{2}\)
\(\Leftrightarrow5x=-\sqrt{2}\)
\(\Leftrightarrow x=\frac{-\sqrt{2}}{5}\)