\(\sqrt{3X^2+6X+16}+\sqrt{X^2+2X}\)

\(=2\sqrt{X...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2017

đặt \(x^2+2x=a\) , thay vào pt ta được:

\(\sqrt{3a+16}+\sqrt{a}=2\sqrt{a+4}\)

\(\Leftrightarrow\left(\sqrt{3a+16}\right)^2=\left(2\sqrt{a+4}-\sqrt{a}\right)^2\)

\(\Leftrightarrow3a+16=4a+16-4\sqrt{a\left(a+4\right)}+a\)

\(\Leftrightarrow\left(4\sqrt{a^2+4a}\right)^2=\left(2a\right)^2\)

\(\Leftrightarrow16a^2+64a=4a^2\)

\(\Leftrightarrow12a^2+64a=0\Leftrightarrow\orbr{\begin{cases}a=0\\a=-\frac{16}{3}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+2x=0\\x^2+2x=-\frac{16}{3}\end{cases}}\)

Tự giải tiếp nhá

27 tháng 5 2017

bạn đặt điều kiện cho a là \(a\ge-4\) rồi loại trường hợp \(a=\frac{-16}{3}\)

NV
24 tháng 11 2018

a/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge-1\\x\le-5\end{matrix}\right.\)

Bình phương 2 vế:

\(x^2+3x+2+2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}+x^2+6x+5=2x^2+9x+7\)

\(\Leftrightarrow2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+3x+2=0\\x^2+6x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\left(l\right)\\x=-5\end{matrix}\right.\)

Vậy pt có 2 nghiệm \(x=-1;x=-5\)

b/ ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\Rightarrow a^2-6=3x+2\sqrt{2x^2+5x+3}-2\)

Phương trình trở thành:

\(a=a^2-6\Leftrightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=-2\left(l\right)\\a=3\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)

\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-3x\ge0\\4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{5}{3}\\x^2-50x+13=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=25+6\sqrt{17}\left(l\right)\\x=25-6\sqrt{17}\end{matrix}\right.\)

Vậy pt có nghiệm duy nhất \(x=25-6\sqrt{17}\)

24 tháng 11 2018

a) \(\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}=\sqrt{\left(x+1\right)\left(2x+7\right)}\)

\(ĐK\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge-2\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}-\sqrt{\left(x+1\right)\left(2x+7\right)}=0\)

\(\Leftrightarrow\sqrt{\left(x+1\right)}\left(\sqrt{x+2}+\sqrt{x+5}-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\sqrt{x+2}+\sqrt{x+5}=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+2+x+5+2\sqrt{\left(x+2\right)\left(x+5\right)}=2x+7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2\sqrt{\left(x+2\right)\left(x+5\right)}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=-5\end{matrix}\right.\)

vậy \(S=\left\{-1;-2;-5\right\}\)

28 tháng 9 2017

a)

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)

\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}=6-\left(x+1\right)^2\)

\(VT\ge6;VP\le6\Rightarrow VT=VP=6\)

Vậy pt có một nghiệm duy nhất là \(x=-1\)

b)

\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)

\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)

\(\Leftrightarrow\left|2x+5\right|+\left|x-4\right|=\left|x+9\right|\)

Lập bảng xét dấu ra nhé ~^o^~

27 tháng 6 2017

1) Đk: x khác -3

x khác 1

Biểu thức \(\Leftrightarrow\dfrac{x^2-x}{x^2+2x-3}+\dfrac{2x+6}{x^2+2x-3}=\dfrac{12}{x^2+2x-3}\)

\(\Leftrightarrow x^2-x+2x+6=12\Leftrightarrow x^2+x-6=0\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

kl: x thuộc {-3;2}

27 tháng 6 2017

@Nguyễn Thị Giang Thanh

9 tháng 8 2017

a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

\(pt\Leftrightarrow\sqrt{3x^2+6x+3+4}+\sqrt{5x^2+10x+5+9}=-x^2-2x+4\)

\(\Leftrightarrow\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}=-x^2-2x+4\)

\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=-x^2-2x+4\)

Dễ thấy: \(\hept{\begin{cases}3\left(x+1\right)^2\ge0\\5\left(x+1\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3\left(x+1\right)^2+4\ge4\\5\left(x+1\right)^2+9\ge9\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\sqrt{3\left(x+1\right)^2+4}\ge2\\\sqrt{5\left(x+1\right)^2+9}\ge3\end{cases}}\)

\(\Rightarrow VT=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\)

Và \(VP=-x^2-2x+4=-x^2-2x-1+5\)

\(=-\left(x^2+2x+1\right)+5=-\left(x+1\right)^2+5\le5\)

SUy ra \(VT\ge VP=5\Leftrightarrow x=-1\)

b)\(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)

\(pt\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}-\sqrt{x-1}=1\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2-\sqrt{x-1}=1\)

..... giải nốt tiếp ra x=1

c)Sửa đề \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)

ĐK:....

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{x-7}+\sqrt{9-x}\right)^2\)

\(\le\left(1+1\right)\left(x-7+9-x\right)=4\)

\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)

Lại có: \(VP=x^2-16x+66=x^2-16x+64+2\)

\(=\left(x-8\right)^2+2\ge2\)

Suy ra \(VT\ge VP=2\) khi \(VT=VP=2\)

\(\Rightarrow\left(x-8\right)^2+2=2\Rightarrow x-8=0\Rightarrow x=8\)

7 tháng 1 2016

tìm đk của 2 cái căn và xét vế bên phải ta được đk là :x>1
\(\Leftrightarrow\sqrt{2x^2+16x+18}-6+\sqrt{x^2-1}=2x-2\)
\(\Leftrightarrow\frac{2x^2+16x+18-36}{\sqrt{2x^2+16x+18}+6}+\sqrt{\left(x-1\right)\left(x+1\right)}=2\left(x-1\right)\)
\(\Leftrightarrow\frac{2\left(x-1\right)\left(x+9\right)}{\sqrt{2x^2+16x+18}+6}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(\sqrt{x-1}\right)^2=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\frac{2\sqrt{x-1}\left(x+9\right)}{\sqrt{2x^2+16x+18}+6}+\sqrt{x+1}-2\sqrt{x-1}\right)=0\)
Xét cái trong ngoặc khó :(. Định CM nó >0

7 tháng 1 2016

chỉ có 1 nghiệm duy nhất là 1

5 tháng 11 2018

ĐKXĐ : x\(\ge0\)

ADBĐT BCS ta được

\(\left(\frac{x^2}{3}+4\right)\left(3+1\right)\ge\left(x+2\right)^2\)

\(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge2x+4\)(do x\(\ge0\))    (1)

Do x\(\ge0\)nên ADBĐT Cauchy ta được:

\(\sqrt{6x}\le\frac{x+6}{2}\)\(\Rightarrow1+\frac{3x}{2}+\sqrt{6x}\le1+\frac{3x}{2}+\frac{x+6}{2}=1+\frac{4x+6}{2}=2x+4\)(2)

Từ (1) và (2) \(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge1+\frac{3x}{2}+\sqrt{6x}\)

Dấu = xảy ra \(\Leftrightarrow x=6\)(thỏa mãn ĐKXĐ)

6 tháng 11 2018

3) ĐKXĐ \(-1\le x\le1\)

Khi đó phương trình đã cho \(\Leftrightarrow4\left(\sqrt{1+x}+\sqrt{1-x}\right)=8-x^2\)

\(\Leftrightarrow\hept{\begin{cases}16\left(2+2\sqrt{1-x^2}\right)=\left(7+1-x^2\right)\left(2\right)\\8-x^2\ge0\end{cases}}\)

Đặt \(\sqrt{1-x^2}=a\ge0\)

Khi đó phương trình (2) trở thành: 

\(\hept{\begin{cases}16\left(2+2a\right)=\left(7+a^2\right)\\x^2\le8\end{cases}}\)

\(\Leftrightarrow a^4+14a^2+49=32+32a\)

\(\Leftrightarrow a^4+14a^2-32a+17=0\)

\(\Leftrightarrow a^4-2a^2+1+16a^2-32a+16=0\)

\(\Leftrightarrow\left(a^2-1\right)^2+16\left(a-1\right)^2=0\)

\(\Leftrightarrow a=1\)

hay \(\sqrt{1-x^2}=1\)

\(\Leftrightarrow x=0\)(thỏa mãn)

NV
17 tháng 9 2019

ĐKXĐ: \(x\ge-\frac{1}{2}\)

Đặt \(\sqrt{2x+1}+\sqrt{3x+4}=a\ge0\)

\(\Rightarrow a^2=5x+5+2\sqrt{6x^2+11x+4}\)

\(\Rightarrow5x+2\sqrt{6x^2+11x+4}=a^2-5\)

Phương trình trở thành:

\(a^2-5=4a+16\)

\(\Leftrightarrow a^2-4a-21=0\)\(\Rightarrow\left[{}\begin{matrix}a=7\\a=-3< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x+1}+\sqrt{3x+4}=7\)

\(\Leftrightarrow\sqrt{2x+1}-3+\sqrt{3x+4}-4=0\)

\(\Leftrightarrow\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}+\frac{3\left(x-4\right)}{\sqrt{3x+4}+4}=0\)

\(\Leftrightarrow\left(x-4\right)\left(\frac{2}{\sqrt{2x+1}+3}+\frac{3}{\sqrt{3x+4}+4}\right)=0\)

\(\Rightarrow x=4\)