\(\sqrt{2x+1}-\sqrt{18x+9}=\sqrt{32+16x}-18\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2021

\(\sqrt{2x+1}-\sqrt{18x+9}=\sqrt{32x+16}-18\left(đk:x\ge-\dfrac{1}{2}\right)\)

\(\Leftrightarrow\sqrt{2x+1}-3\sqrt{2x+1}-4\sqrt{2x+1}=-18\)

\(\Leftrightarrow6\sqrt{2x+1}=18\)

\(\Leftrightarrow\sqrt{2x+1}=3\)

\(\Leftrightarrow2x+1=9\)

\(\Leftrightarrow x=4\left(tm\right)\)

16 tháng 9 2021

\(\sqrt{2x+1}-9\sqrt{2x+1}-16\sqrt{2x+1}=-18\)

\(-24\sqrt{2x+1}=-18\)

\(\sqrt{2x+1}=\dfrac{3}{4}\)

\(\sqrt{\left(2x+1\right)^2}=\dfrac{9}{16}\)

\(2x+1=\dfrac{9}{16}\)

\(x=\dfrac{-7}{32}\)

23 tháng 6 2018

Mk nghĩ \(\sqrt{x^2-1}\) mới đúng

23 tháng 6 2018

\(\sqrt{2x^2+16x+18}+\sqrt{x^2-1}=2x+4\)

\(\Leftrightarrow\sqrt{2x^2+16x+18}-\left(2x+4\right)+\sqrt{x^2-1}=0\)

\(\Leftrightarrow\dfrac{2x^2+16x+18-\left(4x^2+16x+16\right)}{\sqrt{2x^2+16x+18}+\left(2x+4\right)}+\sqrt{x^2-1}=0\)

\(\Leftrightarrow\dfrac{2x^2+16x+18-4x^2-16x-16}{\sqrt{2x^2+16x+18}+\left(2x+4\right)}+\sqrt{x^2-1}=0\)

\(\Leftrightarrow\dfrac{-2x^2+2}{\sqrt{2x^2+16x+18}+\left(2x+4\right)}+\sqrt{x^2-1}=0\)

\(\Leftrightarrow\dfrac{-2\left(x^2-1\right)}{\sqrt{2x^2+16x+18}+\left(2x+4\right)}+\sqrt{x^2-1}=0\)

\(\Leftrightarrow\sqrt{x^2-1}\left(1-\dfrac{2\sqrt{x^2-1}}{\sqrt{2x^2+16x+18}+\left(2x+4\right)}\right)=0\)

Tới đây đơn giản rồi

25 tháng 7 2018

đkxđ: x≥\(-\dfrac{1}{2}\)

\(\sqrt{18x+9}-\sqrt{8x+4}+\dfrac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow3\sqrt{2x+1}-2\sqrt{2x+1}+\dfrac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow\left(3-2+\dfrac{1}{3}\right)\sqrt{2x+1}=4\)

\(\Leftrightarrow\dfrac{4}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow\sqrt{2x+1}=3\Leftrightarrow2x+1=9\Leftrightarrow x=4\)

vậy x = 4

25 tháng 7 2018

Bình phương 2 vế ,ta có:

\(26x+13+\dfrac{1}{9}\left(2x+1\right)-2\sqrt{9.4\left(2x+1\right)^2}-2.\dfrac{1}{3}\sqrt{4\left(2x+1\right)^2}+2.\dfrac{1}{3}\sqrt{9\left(2x+1\right)^2}=16\) \(\dfrac{236}{9}x+\dfrac{118}{9}-2.6.\left(2x+1\right)-\dfrac{2}{3}.2.\left(2x+1\right)+\dfrac{2}{3}.3.\left(2x+1\right)=16\)

\(\dfrac{236}{9}x+\dfrac{118}{9}-24x-12-\dfrac{8}{3}x-\dfrac{4}{3}+4x+2=16\)

\(\dfrac{32}{9}x+\dfrac{16}{9}=16\)

\(\dfrac{16}{9}\left(2x+1\right)=16\)

\(2x+1=9\Rightarrow2x=8\Rightarrow x=4\)

Vậy x=4

29 tháng 1 2020

\(ĐKXĐ:2x^2+16x+18\ge0;x^2-1\ge0\)

\(pt\Leftrightarrow\sqrt{x^2-1}=2x+4-\sqrt{2x^2+16x+18}\)(1)

\(\Leftrightarrow\sqrt{x^2-1}\left(\frac{2\sqrt{x^2-1}}{2x+4+\sqrt{2x^2+16x+18}}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-1}=0\\2\sqrt{x^2-1}=2x+4+\sqrt{2x^2+16x+18}\left(2\right)\end{cases}}\)

Lấy(1) + (2), ta được: \(3\sqrt{x^2-1}=4x+8\Leftrightarrow x=\frac{3\sqrt{57}-32}{7}\)

12 tháng 1 2016

\(pt\Rightarrow\sqrt{x^2-1}=2x+4-\sqrt{2x^2+16x+18}\)

\(\Rightarrow\sqrt{\frac{1}{2}.\left(2x+4\right)^2-\frac{1}{2}.\left(2x^2+16x+18\right)}=2x+4-\sqrt{2x^2+16x+18}\)

Chia 2 vế cho \(\sqrt{2x^2+16x+18}\)

\(\Rightarrow\sqrt{\frac{\left(2x+4\right)^2}{2.\left(2x^2+16x+18\right)}-\frac{1}{2}}=\frac{2x+4}{\sqrt{2x^2+16x+18}}-1\)

Đặt \(\frac{2x+4}{\sqrt{2x^2+16x+18}}=a\)

\(\Rightarrow\sqrt{\frac{1}{2}a^2-\frac{1}{2}}=a-1\left(a\ge1\right)\)

Kết quả x = 1 nha , chính xác r nek

 

12 tháng 1 2016

Đợi tẹo coi mình làm được không.

21 tháng 10 2018

a) \(\sqrt{16x-8}+\sqrt{36x-18}-\sqrt{64x-32}=\sqrt{10}\)

\(\Leftrightarrow\sqrt{8\left(2x-1\right)}+\sqrt{18\left(2x-1\right)}-\sqrt{32\left(2x-1\right)}=\sqrt{10}\)

\(\Leftrightarrow\sqrt{8}.\sqrt{2x-1}+\sqrt{18}.\sqrt{2x-1}-\sqrt{32}.\sqrt{2x-1}=\sqrt{10}\)

\(\Leftrightarrow\sqrt{2x-1}.\left(\sqrt{8}+\sqrt{18}-\sqrt{32}\right)=\sqrt{10}\)

\(\Leftrightarrow\sqrt{2x-1}.\sqrt{2}=\sqrt{10}\)

\(\Leftrightarrow\sqrt{2x-1}=\sqrt{5}\)

\(\Leftrightarrow2x-1=5\)

\(\Leftrightarrow x=3\)

Vậy ...

b) \(\sqrt{x^2-6x+9}=x+3\)

\(\Leftrightarrow\sqrt{x^2-2.x.3+3^2}=x+3\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=x+3\)

\(\Leftrightarrow\left|x-3\right|=x+3\)

\(\Leftrightarrow x-3=x+3\) hoặc \(x-3=-x-3\)

\(\Leftrightarrow x=0\)

Vậy ...

21 tháng 10 2018

bài 2 :

A = \(\left(\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{4\sqrt{ab}}{a-b}\right)\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}-\left(a+b\right)}\right)\)

\(=\left(\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{4\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a+\sqrt{b}}\right)}\right)\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}-\left(a+b\right)}\right)\)

\(=\left(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right)\left(\dfrac{\sqrt{a^3}+\sqrt{b^3}}{\sqrt{ab}-a-b}\right)\)

\(=\left(\dfrac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right)\left(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{-a+\sqrt{ab}-b}\right)\)

\(=\dfrac{a-2\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}.\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{-\left(a-\sqrt{ab}+b\right)}\)

\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}.\left(-\left(\sqrt{a}+\sqrt{b}\right)\right)\)

\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right).\left(-1\right).\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}\)

\(=-\left(\sqrt{a}-\sqrt{b}\right)=\sqrt{b}-\sqrt{a}\)

cuối cùng cũng xong, mong bn phù hộ độ trì cho mkgianroi

AH
Akai Haruma
Giáo viên
28 tháng 6 2019

Lời giải:

a) ĐK: \(x>0; x\neq 25; x\neq 36\)

PT \(\Rightarrow (\sqrt{x}-2)(\sqrt{x}-6)=(\sqrt{x}-5)(\sqrt{x}-4)\)

\(\Leftrightarrow x-8\sqrt{x}+12=x-9\sqrt{x}+20\)

\(\Leftrightarrow \sqrt{x}=8\Rightarrow x=64\) (thỏa mãn)

Vậy.......

b)

ĐK: \(x\geq \frac{-1}{2}\)

PT \(\Leftrightarrow \sqrt{9(2x+1)}-\sqrt{4(2x+1)}+\frac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow 3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow \frac{4}{3}\sqrt{2x+1}=4\Leftrightarrow \sqrt{2x+1}=3\)

\(\Rightarrow x=\frac{3^2-1}{2}=4\) (thỏa mãn)

c)

ĐK: \(x\geq 2\)

PT \(\Leftrightarrow \sqrt{4(x-2)}-\frac{1}{2}\sqrt{x-2}+\sqrt{9(x-2)}=9\)

\(\Leftrightarrow 2\sqrt{x-2}-\frac{1}{2}\sqrt{x-2}+3\sqrt{x-2}=9\)

\(\Leftrightarrow \frac{9}{2}\sqrt{x-2}=9\Leftrightarrow \sqrt{x-2}=2\Rightarrow x=2^2+2=6\) (thỏa mãn)

7 tháng 1 2016

tìm đk của 2 cái căn và xét vế bên phải ta được đk là :x>1
\(\Leftrightarrow\sqrt{2x^2+16x+18}-6+\sqrt{x^2-1}=2x-2\)
\(\Leftrightarrow\frac{2x^2+16x+18-36}{\sqrt{2x^2+16x+18}+6}+\sqrt{\left(x-1\right)\left(x+1\right)}=2\left(x-1\right)\)
\(\Leftrightarrow\frac{2\left(x-1\right)\left(x+9\right)}{\sqrt{2x^2+16x+18}+6}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(\sqrt{x-1}\right)^2=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\frac{2\sqrt{x-1}\left(x+9\right)}{\sqrt{2x^2+16x+18}+6}+\sqrt{x+1}-2\sqrt{x-1}\right)=0\)
Xét cái trong ngoặc khó :(. Định CM nó >0

7 tháng 1 2016

chỉ có 1 nghiệm duy nhất là 1