\(\sqrt[3]{x-1}+\sqrt[3]{x+1}=x\sqrt[3]{2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 8 2021

\(\Leftrightarrow2x+3\sqrt[3]{x^2-1}\left(\sqrt[3]{x-1}+\sqrt[3]{x+1}\right)=2x^3\)

\(\Rightarrow2x+3\sqrt[3]{x^2-1}.x\sqrt[3]{2}=2x^3\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\2+3\sqrt[3]{2\left(x^2-1\right)}=2x^2\left(1\right)\end{matrix}\right.\)

Xét (1):

Đặt \(\sqrt[3]{2x^2-2}=t\Rightarrow2x^2=t^3+2\)

\(\Rightarrow2+3t=t^3+2\)

\(\Leftrightarrow t\left(t^2-3\right)=0\)

\(\Leftrightarrow...\)

AH
Akai Haruma
Giáo viên
30 tháng 3 2018

Lời giải:
ĐKXĐ: \(1\le x\leq 2\)

Ta có: \((\sqrt{2-x}+1)(\sqrt{x+3}-\sqrt{x-1})=4\)

\(\Leftrightarrow (\sqrt{2-x}+1).\frac{(x+3)-(x-1)}{\sqrt{x+3}+\sqrt{x-1}}=4\)

\(\Leftrightarrow (\sqrt{2-x}+1).\frac{4}{\sqrt{x+3}+\sqrt{x-1}}=4\Rightarrow \sqrt{2-x}+1=\sqrt{x+3}+\sqrt{x-1}\)

\(\Leftrightarrow (\sqrt{x+3}-2)+\sqrt{x-1}-(\sqrt{2-x}-1)=0\)

\(\Leftrightarrow \frac{x-1}{\sqrt{x+3}+2}+\sqrt{x-1}-\frac{1-x}{\sqrt{2-x}+1}=0\)

\(\Leftrightarrow \sqrt{x-1}\left(\frac{\sqrt{x-1}}{\sqrt{x+3}+2}+1+\frac{\sqrt{x-1}}{\sqrt{2-x}+1}\right)=0\)

Hiển nhiên biểu thức trong ngoặc lớn luôn lớn hơnm $0$

Do đó \(\sqrt{x-1}=0\Leftrightarrow x=1\) (thỏa mãn)

21 tháng 8 2019

đằng giữa 2 căn là dấu cộng nha ~

11 tháng 2 2019

a.

\(\sqrt{x+4\sqrt{x}+4=5x+2}\)

\(\Rightarrow\sqrt{\left(\sqrt{x}\right)^2+2.2.\sqrt{x}+2^2}=5x+2\)

\(\Rightarrow\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)

\(\Rightarrow\sqrt{x}+2=5x+2\)

\(\Rightarrow\sqrt{x}=5x\)

\(\Rightarrow x=25x^2\)

\(\Rightarrow x=0\)
Vậy nghiệm của phương trình là x = 0

b)

\(\sqrt{x-2\sqrt{x}+1}-\sqrt{x-4\sqrt{x}+4}=10\)

\(\Rightarrow\sqrt{\left(\sqrt{x}-1\right)^2}-\sqrt{\left(\sqrt{x}-2\right)^2=10}\)

\(\Rightarrow\sqrt{x}-1-\sqrt{x}+2=10\)

\(\Rightarrow1=10\) (Vô lí)

Vậy phương trình đã cho vô nghiệm

6 tháng 7 2017

2. \(\dfrac{\sqrt{x^2}-16}{\sqrt{x-3}}+\sqrt{x+3}=\dfrac{7}{\sqrt{x-3}}\) (2)

\(\Leftrightarrow\dfrac{\sqrt{x^2}-16}{\sqrt{x-3}}+\sqrt{x+3}-\dfrac{7}{\sqrt{x-3}}=0\)

\(\Leftrightarrow\dfrac{\sqrt{x^2}-16+\sqrt{\left(x-3\right)\left(x+3\right)}-7}{\sqrt{x-3}}=0\)

\(\Leftrightarrow\sqrt{x^2}-16+\sqrt{\left(x-3\right)\left(x+3\right)}-7=0\)

\(\Leftrightarrow\left|x\right|-16+\sqrt{x^2-9}-7=0\)

\(\Leftrightarrow\left|x\right|-23+\sqrt{x^2-9}=0\)

\(\Leftrightarrow\sqrt{x^2-9}=-\left|x\right|+23\)

\(\Leftrightarrow x^2-9=-\left(-\left|x\right|+23\right)^2\)

\(\Leftrightarrow x^2-9=-\left(-\left|x\right|\right)^2-46\cdot\left|x\right|+529\)

\(\Leftrightarrow x^2-9=\left|x\right|^2-46+\left|x\right|+529\)

\(\Leftrightarrow x^2-9=x^2-46\cdot\left|x\right|+529\)

\(\Leftrightarrow-9=-46\cdot\left|x\right|+529\)

\(\Leftrightarrow46\cdot\left|x\right|=529+9\)

\(\Leftrightarrow49\cdot\left|x\right|=538\)

\(\Leftrightarrow\left|x\right|=\dfrac{269}{23}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{269}{23}\\x=-\dfrac{269}{23}\end{matrix}\right.\)

Sau khi dùng phép thử ta nhận thấy \(x\ne-\dfrac{269}{23}\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{269}{23}\right\}\)

3. sửa đề: \(\sqrt{14-x}=\sqrt{x-4}\sqrt{x-1}\) (3)

\(\Leftrightarrow\sqrt{14-x}=\sqrt{\left(x-4\right)\left(x-1\right)}\)

\(\Leftrightarrow\sqrt{14-x}=\sqrt{x^2-x-4x+4}\)

\(\Leftrightarrow\sqrt{14-x}=\sqrt{x^2-5x+4}\)

\(\Leftrightarrow14-x=x^2-5x+4\)

\(\Leftrightarrow14-x-x^2+5x-4=0\)

\(\Leftrightarrow10+4x-x^2=0\)

\(\Leftrightarrow-x^2+4x+10=0\)

\(\Leftrightarrow x^2-4x-10=0\)

\(\Leftrightarrow x=\dfrac{-\left(-4\right)\pm\sqrt{\left(-4\right)^2-4\cdot1\cdot\left(-10\right)}}{2\cdot1}\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{16+40}}{2}\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{56}}{2}\)

\(\Leftrightarrow x=\dfrac{4\pm2\sqrt{14}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4-2\sqrt{14}}{2}\\x=\dfrac{4+2\sqrt{14}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{14}\\x=2-\sqrt{14}\end{matrix}\right.\)

sau khi dùng phép thử ta nhận thấy \(x\ne2-\sqrt{14}\)

Vậy tập nghiệm phương trình (3) là \(S=\left\{2+\sqrt{14}\right\}\)

6 tháng 7 2017

3. \(\sqrt{14-x}-\sqrt{x-4}=\sqrt{x-1}\)

22 tháng 11 2016

d/ \(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{\left(x-1\right)^2}+\sqrt[3]{x^2-1}=1\)

Đặt \(\hept{\begin{cases}\sqrt[3]{x+1}=a\\\sqrt[3]{x-1}=b\end{cases}\Rightarrow a^3-b^3=2}\)

\(\Rightarrow\hept{\begin{cases}a^3-b^3=2\\a^2+b^2+ab=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)\left(a^2+b^2+ab\right)=2\\a^2+b^2+ab=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a-b=2\\a^2+b^2+ab=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a-b=2\\b^2+2b+1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=-1\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt[3]{x+1}=1\\\sqrt[3]{x-1}=-1\end{cases}\Leftrightarrow}x=0}\)

22 tháng 11 2016

bài b , lập phương lên 

bài c , đặt cái căn đưa về hệ 

mới nhìn dc làm dc liền thế thui

6 tháng 9 2017

ĐK:\(-\frac{1}{2}\le x\le4\)

\(\sqrt{4-x}+\sqrt{2x+1}=3\)

\(\Leftrightarrow\sqrt{4-x}-\left(\frac{1}{2}x-2\right)+\sqrt{2x+1}-\left(-\frac{1}{2}x-1\right)=0\)

\(\Leftrightarrow\frac{4-x-\left(\frac{1}{2}x-2\right)^2}{\sqrt{4-x}+\frac{1}{2}x-2}+\frac{2x+1-\left(-\frac{1}{2}x-1\right)^2}{\sqrt{2x+1}+\frac{1}{2}x-1}=0\)

\(\Leftrightarrow\frac{\frac{-\left(x^2-4x\right)}{4}}{\sqrt{4-x}+\frac{1}{2}x-2}+\frac{\frac{-\left(x^2-4x\right)}{4}}{\sqrt{2x+1}+\frac{1}{2}x-1}=0\)

\(\Leftrightarrow\frac{-x\left(x-4\right)}{4}\left(\frac{1}{\sqrt{4-x}+\frac{1}{2}x-2}+\frac{1}{\sqrt{2x+1}+\frac{1}{2}x-1}\right)=0\)

Thấy: \(\frac{1}{\sqrt{4-x}+\frac{1}{2}x-2}+\frac{1}{\sqrt{2x+1}+\frac{1}{2}x-1}>0\)

\(\Rightarrow\frac{-x\left(x-4\right)}{4}=0\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

AH
Akai Haruma
Giáo viên
30 tháng 7 2018

a) ĐK: \(x\ge -1\)

Ta có: \(x^2+\sqrt{x+1}=1\)

\(\Leftrightarrow (x^2-1)+\sqrt{x+1}=0\)

\(\Leftrightarrow (x-1)(x+1)+\sqrt{x+1}=0\)

\(\Leftrightarrow \sqrt{x+1}[(x-1)\sqrt{x+1}+1]=0\)

\(\Rightarrow \left[\begin{matrix} \sqrt{x+1}=0(1)\\ (x-1)\sqrt{x+1}+1=0(2)\end{matrix}\right.\)

Với \((1)\Rightarrow x+1=0\Rightarrow x=-1\) (thỏa mãn)

Với \((2)\Rightarrow x\sqrt{x+1}-(\sqrt{x+1}-1)=0\)

\(\Leftrightarrow x\sqrt{x+1}-\frac{x}{\sqrt{x+1}+1}=0\)

\(\Leftrightarrow x\left(\sqrt{x+1}-\frac{1}{\sqrt{x+1}+1}\right)=0\)

\(\Leftrightarrow x.\frac{x+1+\sqrt{x+1}-1}{\sqrt{x+1}+1}=0\)

\(\Leftrightarrow x.\frac{x+\sqrt{x+1}}{\sqrt{x+1}+1}=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ x+\sqrt{x+1}=0\end{matrix}\right.\)

Với \(x+\sqrt{x+1}=0\Rightarrow x=-\sqrt{x+1}\Rightarrow \left\{\begin{matrix} x\leq 0\\ x^2=x+1\end{matrix}\right.\Rightarrow x=\frac{1-\sqrt{5}}{2}\)

Vậy \(x=\left\{-1; \frac{1-\sqrt{5}}{2}; 0\right\}\)

AH
Akai Haruma
Giáo viên
30 tháng 7 2018

b) ĐK: \(-3\leq x\leq 6\)

Ta có: \((\sqrt{3+x}+\sqrt{6-x})^2=3+x+6-x+2\sqrt{(3+x)(6-x)}\)

\(=9+2\sqrt{(3+x)(6-x)}\geq 9\)

\(\Rightarrow \sqrt{3+x}+\sqrt{6-x}\geq 3\) do \(\sqrt{3+x}+\sqrt{6-x}\) không âm.

Dấu "=" xảy ra khi \(\sqrt{(3+x)(6-x)}=0\Leftrightarrow x=-3; x=6\)

Vậy \(x=-3\) or $x=6$

24 tháng 7 2017

a) ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\0>x\ge-1\end{matrix}\right.\). Để pt có nghiệm => x>0=> \(x\ge1\) pt<=> \(x-\sqrt{1-\dfrac{1}{x}}=\sqrt{x-\dfrac{1}{x}}.Bìnhphương2vetaco\left(x-\sqrt{1-\dfrac{1}{x}}\right)^2=x-\dfrac{1}{x}\)\(\Leftrightarrow x^2+1-\dfrac{1}{x}-2x\sqrt{1-\dfrac{1}{x}}=x-\dfrac{1}{x}\Leftrightarrow x^2-x+1=2\sqrt{x^2-x}\Leftrightarrow\left(\sqrt{x^2-x}-1\right)^2=0\Leftrightarrow x^2-x=1\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)

24 tháng 7 2017

b) ĐKXĐ\(0\le x\le1\) pt \(\Leftrightarrow\left(\sqrt{x^2+x}+\sqrt{x-x^2}\right)^2=\left(x+1\right)^2\Leftrightarrow2x+2x.\sqrt{1-x^2}=x^2+2x+1\Leftrightarrow x^2-2x\sqrt{1-x^2}+1-x^2+x^2=0\Leftrightarrow\left(x-\sqrt{1-x^2}\right)^2+x^2=0\)