Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK: \(x\ne0;x\ne-1\)
\(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{2}+x-2\right)\)
\(=\left(\frac{x+1-2+x}{\left(x^2+x\right)\left(x+1\right)}\right):\left(\frac{1+2x+4}{2}\right)\)
\(=\frac{2x-1}{\left(x^2+x\right)\left(x+1\right)}:\frac{2x+5}{2}\)\(=\frac{2\left(2x-1\right)}{\left(x^2+x\right)\left(x+1\right)\left(2x+5\right)}\)?? hình như hết tính tiếp được rồi :v
P/s: Có phải đề là tính giá trị biểu thức không?
\(a,\frac{1}{2}x+\frac{1}{2}+\frac{1}{4}x+\frac{3}{4}=3-\frac{1}{3}x-\frac{2}{3}\)
\(\frac{13}{12}x=\frac{13}{12}\Rightarrow x=1\)
i) (x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8
<=> 5x2 - 2x - 3 = 3x2 - 11x + 8
<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0
<=> 2x2 + 9x - 11 = 0
<=> 2x2 + 11x - 2x - 11 = 0
<=> x(2x + 11) - (2x + 11) = 0
<=> (x - 1)(2x + 11) = 0
<=> x - 1 = 0 hoặc 2x + 11 = 0
<=> x = 0 hoặc x = -11/2
m) 2x(x - 1) = x2 - 1
<=> 2x2 - 2x = x2 - 1
<=> 2x2 - 2x - x2 + 1 = 0
<=> x2 - 2x + 1 = 0
<=> (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)
<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x
<=> -31x + 22 - 3x2 = 16x - 15x2 - 4
<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0
<=> 47x - 18 - 12x2 = 0
<=> -12x2 + 47x - 26 = 0
<=> 12x2 - 47x + 26 = 0
<=> 12x2 - 8x - 39x + 26 = 0
<=> 4x(3x - 2) - 13(3x - 2) = 0
<=> (4x - 13)(3x - 2) = 0
<=> 4x - 13 = 0 hoặc 3x - 2 = 0
<=> x = 13/4 hoặc x = 2/3
i) (x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8
<=> 5x2 - 2x - 3 = 3x2 - 11x + 8
<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0
<=> 2x2 + 9x - 11 = 0
<=> 2x2 + 11x - 2x - 11 = 0
<=> x(2x + 11) - (2x + 11) = 0
<=> (x - 1)(2x + 11) = 0
<=> x - 1 = 0 hoặc 2x + 11 = 0
<=> x = 0 hoặc x = -11/2
m) 2x(x - 1) = x2 - 1
<=> 2x2 - 2x = x2 - 1
<=> 2x2 - 2x - x2 + 1 = 0
<=> x2 - 2x + 1 = 0
<=> (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)
<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x
<=> -31x + 22 - 3x2 = 16x - 15x2 - 4
<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0
<=> 47x - 18 - 12x2 = 0
<=> -12x2 + 47x - 26 = 0
<=> 12x2 - 47x + 26 = 0
<=> 12x2 - 8x - 39x + 26 = 0
<=> 4x(3x - 2) - 13(3x - 2) = 0
<=> (4x - 13)(3x - 2) = 0
<=> 4x - 13 = 0 hoặc 3x - 2 = 0
<=> x = 13/4 hoặc x = 2/3
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}+2\right)=\left(x+4\right)^2\)
\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2-8\left(x^2+\frac{1}{x^2}\right)=\left(x+2\right)^2\)
\(\Leftrightarrow8\left(x^2+\frac{1}{x^2}+2\right)-8\left(x^2+\frac{1}{x^2}\right)=\left(x+2\right)^2\)
\(\Leftrightarrow\left(x+2\right)^2=16\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)
\(a,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)\(\Leftrightarrow\frac{x^2+3x+2+x^2-3x+2}{x^2-4}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow2\left(x^2+2\right)=2\left(x^2+2\right)\)(luôn đúng)
Vậy pt có vô số nghiệm
\(b,\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(2x+3-x+5\right)=0\)\(\Leftrightarrow\left(\frac{-4x+10}{2-7x}\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-4x+10=0\\x+8=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}\)
Mấy câu rút gọn bạn quy đồng nha
ĐKXĐ: \(x\ne0\)
Ta có \(\left(x+\frac{1}{x}\right)^2=x^2+\frac{1}{x^2}+2\)
Đặt \(x^2+\frac{1}{x^2}=a\Rightarrow\left(x+\frac{1}{x}\right)^2=a+2\) pt trở thành:
\(8\left(a+2\right)+4a^2-4a\left(a+2\right)=\left(x+4\right)^2\)
\(\Leftrightarrow8a+16+4a^2-4a^2-8a=\left(x+4\right)^2\)
\(\Leftrightarrow\left(x+4\right)^2=16\)
\(\Rightarrow\left[{}\begin{matrix}x+4=4\\x+4=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=-8\end{matrix}\right.\)