Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d, 2x2-5x-3 = 0
\(\Leftrightarrow\)2x2-6x+x-3= 0
\(\Leftrightarrow\)(2x2-6x) +(x-3) = 0
\(\Leftrightarrow\)2x(x-3) + (x-3) = 0
\(\Leftrightarrow\)(x-3) (2x+1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S =\(\left\{3;\frac{-1}{2}\right\}\)
\(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{1}{x^2+2x-3}=1.\)
\(ĐK:\hept{\begin{cases}x-1\ne0\\x+3\ne\\x^2+2x-3\ne0\end{cases}0}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\Leftrightarrow-3\end{cases}}\)
\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)+4-x^2-2x+3=0\)
\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5+4-x^2-2x+3=0\)
\(\Leftrightarrow3x+9=0\)
\(\Leftrightarrow3x=-9\Leftrightarrow x=-3\) (loại)
Vậy pt vô No
a: \(\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}=\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}\)
\(\Leftrightarrow2\left(x+5\right)^2-\left(x-5\right)^2=x\left(x+25\right)\)
\(\Leftrightarrow2x^2+20x+50-x^2+10x-25=x^2+25x\)
\(\Leftrightarrow x^2+30x+25=x^2+25x\)
=>5x=-25
hay x=-5(loại)
b: \(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\)
\(\Leftrightarrow x^2+4x+4-2x+3=x^2+10\)
=>2x+7=10
hay x=3/2
Bài 1:
a) \(\frac{2x+1}{3}-\frac{x}{4}=2\)
\(\Leftrightarrow\frac{4\left(2x+1\right)}{12}-\frac{3x}{12}-\frac{24}{12}=0\)
\(\Leftrightarrow8x+4-3x-24=0\)
\(\Leftrightarrow5x-20=0\)
\(\Leftrightarrow5x=20\)
\(\Leftrightarrow x=4\)
Vậy \(S=\left\{4\right\}\)
b) \(\frac{2x+5}{2x}-\frac{x}{x+5}=0\)
ĐKXĐ: \(x\ne0;x\ne-5\)
\(\Leftrightarrow\frac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\frac{x\left(2x+5\right)}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow2x^2+10x+5x+25-2x^2-5x=0\)
\(\Leftrightarrow10x+25=0\)
\(\Leftrightarrow10x=-25\)
\(\Leftrightarrow x=-\frac{5}{2}\left(TM\right)\)
Vậy \(S=\left\{-\frac{5}{2}\right\}\)
#Học tốt!
\(ĐKXĐ:x\ne0;-2;-4;-6;-8\)\(\frac{1}{x\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+8\right)}=\frac{4}{105}\)
\(\Leftrightarrow\frac{2}{x\left(x+2\right)}+\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{2}{\left(x+4\right)\left(x+6\right)}+\frac{2}{\left(x+6\right)\left(x+8\right)}=\frac{8}{105}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+4}+...+\frac{1}{x+6}-\frac{1}{x+8}=\frac{8}{105}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+8}=\frac{8}{105}\)
Quy đồng làm nốt
a)
\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\\ \Leftrightarrow\frac{201-x}{99}+\frac{99}{99}+\frac{203-x}{97}+\frac{97}{97}+\frac{205-x}{95}+\frac{95}{95}+4=4\\ \Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\) (*)
Do \(\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)\ne0\)
nên (*) \(\Leftrightarrow300-x=0\\ \Leftrightarrow x=300\)
b)
\(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\\ \Leftrightarrow\frac{2-x}{2002}+\frac{2002}{2002}-1+1=\frac{1-x}{2003}+\frac{2003}{2003}-\frac{x}{2004}+\frac{2004}{2004}\\ \Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}-\frac{2004-x}{2004}\\ \Leftrightarrow\frac{2004-x}{2002}-\frac{2004-x}{2003}+\frac{2004-x}{2004}=0\)
\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)=0\) (*)
Do \(\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)\ne0\)
nên (*) \(\Leftrightarrow2004-x=0\)
\(\Leftrightarrow x=2004\)
c) \(\left|2x-3\right|=2x-3\) (1)
ĐKXĐ: \(\\ 2x-3\ge0\)
\(\Leftrightarrow x\ge\frac{3}{2}\)
\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}2x-3=2x-3\\2x-3=-2x+3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}0x=0\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\forall x\in R\\x=\frac{3}{2}\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{\frac{3}{2}\right\}\)
x = 0 hoặc x = 1
Tk mình nha!!!
\(\frac{x}{x-1}-\frac{2x}{x^2-1}=0\)
\(\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x}{x^2-1}=0\)
\(\frac{x^2+x}{x^2-1}-\frac{2x}{x^2-1}=0\)
\(\frac{x^2-x}{x^2-1}=0\)
\(x.\frac{x-1}{x^2-1}=0\)
=> x=0 hoặc x= 1
Mà nếu x=1 thì x-1 =0 (sai vì x/x-1 có giá trị)
Vậy x = 0