Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2004}-\frac{x+2005}{2003}-\frac{x+2005}{2003}=0\)
\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
\(\Leftrightarrow x+2005=0\Leftrightarrow x=-2005\)
=> (x+1)/2004+1+(x+2)/2003+1=(x+3)/2002+1+(x+4)/2001+1
=> (x+2005)/2004+(x+2005)/2003=(x+2005)/2002+(x+2005)/2001
=> (x+2005)(1/2004+1/2003-1/2002-1/2001)=0
=> x+2005=0
=> x=-2005
ĐKXĐ : \(\hept{\begin{cases}x-3\ne0\\x+3\ne0\\9-x^2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne3\end{cases}}}\)
\(\frac{x}{x-3}-\frac{x}{x+3}=\frac{-2x^2+x-3}{9-x^2}\)
\(\Leftrightarrow\frac{x\left(x+3\right)-x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2x^2-x+3}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow2x^2-x+3=x^2+3x-x^2+3x\)
\(\Leftrightarrow2x^2-x+3=6x\)
\(\Leftrightarrow2x^2+5x+3=0\)
\(\Leftrightarrow2x^2+2x+3x+3=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+3=0\\x+1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-1\end{cases}}\)(TMĐKXĐ)
<=> x2-3x-x2-3x=-2x2+x-3 (x khác -3 và x khác 3)
<=> 2x2-7x+3=0
\(\Delta=7^2-4.2.3=49-24=25\)=> \(\sqrt{\Delta}=5\)
=> \(\hept{\begin{cases}x_1=\frac{7-5}{4}=\frac{1}{2}\\x_2=\frac{7+5}{4}=3\end{cases}}\)
ĐS: x1=1/2; x2=3
Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100
a)
\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\\ \Leftrightarrow\frac{201-x}{99}+\frac{99}{99}+\frac{203-x}{97}+\frac{97}{97}+\frac{205-x}{95}+\frac{95}{95}+4=4\\ \Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\) (*)
Do \(\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)\ne0\)
nên (*) \(\Leftrightarrow300-x=0\\ \Leftrightarrow x=300\)
b)
\(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\\ \Leftrightarrow\frac{2-x}{2002}+\frac{2002}{2002}-1+1=\frac{1-x}{2003}+\frac{2003}{2003}-\frac{x}{2004}+\frac{2004}{2004}\\ \Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}-\frac{2004-x}{2004}\\ \Leftrightarrow\frac{2004-x}{2002}-\frac{2004-x}{2003}+\frac{2004-x}{2004}=0\)
\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)=0\) (*)
Do \(\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)\ne0\)
nên (*) \(\Leftrightarrow2004-x=0\)
\(\Leftrightarrow x=2004\)
c) \(\left|2x-3\right|=2x-3\) (1)
ĐKXĐ: \(\\ 2x-3\ge0\)
\(\Leftrightarrow x\ge\frac{3}{2}\)
\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}2x-3=2x-3\\2x-3=-2x+3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}0x=0\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\forall x\in R\\x=\frac{3}{2}\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{\frac{3}{2}\right\}\)
\(\frac{x+3}{x-3}-\frac{x-3}{x+3}=\frac{9}{x^2-9}\)
\(\Leftrightarrow\)\(\frac{\left(x+3\right).\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}\)\(-\)\(\frac{\left(x-3\right).\left(x-3\right)}{\left(x+3\right).\left(x-3\right)}\)\(=\frac{9}{\left(x+3\right).\left(x-3\right)}\)
\(\Leftrightarrow\) \(\left(x+3\right)^2-\left(x-3\right)^2=9\)
\(\Leftrightarrow\)\(x^2+6x+9-x^2+6x-9=9\)
\(\Leftrightarrow\) \(12x=9\)
\(\Leftrightarrow\)\(x=\frac{3}{4}\)
Vậy phương trình có nghiệm là: \(x=\frac{3}{4}\)
a) \(\left(2x+1\right)\left(3x-2\right)=\left(2x+1\right)\left(5x-8\right)\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2\right)-\left(2x+1\right)\left(5x-8\right)=0\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2-5x+8\right)=0\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(6-2x\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x+1=0\\6-2x=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-0,5\\x=3\end{cases}}\)
Vậy...
b) \(ĐKXĐ:\) \(x\ne-2;\) \(x\ne4\)
\(\frac{3}{x+2}+\frac{2}{x-4}=0\)
\(\Leftrightarrow\)\(\frac{3\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}+\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-4\right)}=0\)
\(\Leftrightarrow\)\(\frac{3x-12+2x+4}{\left(x+2\right)\left(x-4\right)}=0\)
\(\Leftrightarrow\)\(\frac{5x-8}{\left(x+2\right)\left(x-4\right)}=0\)
\(\Rightarrow\)\(5x-8=0\)
\(\Leftrightarrow\)\(x=\frac{8}{5}\) (T/m đkxđ)
Vậy...
c) \(x^3+4x^2+4x+3=0\)
\(\Leftrightarrow\)\(x^3+3x^2+x^2+3x+x+3=0\)
\(\Leftrightarrow\)\(x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)=0\)
\(\Leftrightarrow\)\(\left(x+3\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\)\(x+3=0\) (do \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) \(\forall x\))
\(\Leftrightarrow\)\(x=-3\)
Vậy...
a) \(2\left(x-1\right)-a\left(x-1\right)=2a+3\)
\(\Leftrightarrow2a-2-ax+a=2a+3\)
\(\Leftrightarrow-2-ax+a=3\)
\(\Leftrightarrow-a\left(x-1\right)=5\)
\(\Leftrightarrow\left(x-1\right)=\frac{-5}{a}\Leftrightarrow x=\frac{a-5}{a}\)
b) \(\frac{x+1}{2}+\frac{x+2}{3}+\frac{x+3}{4}=3\)
\(\Leftrightarrow\frac{12x+12+8x+16+6x+18}{24}=3\)
\(\Leftrightarrow12x+12+8x+16+6x+18=72\)
\(\Leftrightarrow26x+46=72\)
\(\Leftrightarrow26x=26\Leftrightarrow x=1\)
ĐKXĐ : \(\orbr{\begin{cases}x\ne-3\\x\ne3\end{cases}}\)
\(\frac{x+3}{x-3}+\frac{36}{9-x^2}=\frac{x-3}{x+3}\)
\(\Rightarrow\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{-\left(36\right)}{x^2-9}-\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Rightarrow\left(x+3\right)^2-36-\left(x-3\right)^2=0\)
\(\Leftrightarrow x^2+6x+9-36-x^2+6x-9=0\)
\(\Leftrightarrow12x-36=0\Leftrightarrow x=3\)(LOẠI)
vậy tập nghiệm của phương trình là : S = rỗng
tk nka !!