Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
theo yêu cầu của bạn thì đến đâ mk làm theo cách này
ÁP Dụng cô si ta có:\(x+y\ge2\sqrt{xy}\)\(\Rightarrow\left(x+y\right)^2\ge4xy\)(luôn đúng)\(\Rightarrowđpcm\)
cách 2
\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
\(\Rightarrowđpcm\)
\(\hept{\begin{cases}x+y=\frac{4x-3}{5}\\x+3y=\frac{15-9y}{14}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5x+5y=4x-3\\14x+42y=15-9y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+5y=-3\\14x+51y=15\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}14x+70y=-42\\14x+51y=15\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}19y=-57\\14x+51y=15\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-\frac{57}{19}\\x=12\end{cases}}\)
Vậy hpt có nghiệm \(\left(x;y\right)=\left(12;-\frac{57}{19}\right)\)
PP chung ở cả 3 câu,nói ngắn gọn nhé:
Chứng mình x khác 0,hay nói cách khác x=0 không là nghiệm của phương trình.
Chia cả tử và mẫu cho x ,rồi giải bình thường bằng cách đặt ẩn phụ.
Vd ở câu a>>>4/(4x-8+7/x)+3/(4x-10+7/x)=1.Sau đó đặt 4x+7/x=a>>>4/(a-8)+3/(a-10)=1>>>giải bình thường,các câu sau tương tự
\(B=\left(\sqrt{x}+\frac{\sqrt{5}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{2}-\sqrt{3}}\right)\frac{\left(\sqrt{x}-\sqrt{5}\right)^2}{\sqrt{x}-\sqrt{5}}=\left(\sqrt{x}+\sqrt{5}\right)\left(\sqrt{x}-\sqrt{5}\right)=x-5\)
ĐKXĐ: \(x\le-3\)hoặc 1 < x
(x2 - 3x +2)\(\sqrt{\frac{x+3}{x-1}}\)=\(\frac{-1}{2}x^3+\frac{15}{2}x-11\)
<=> (x - 1)(x - 2)\(\sqrt{\frac{x+3}{x-1}}\)=\(\frac{-1}{2}\left(x-2\right)\left(x^2+2x-11\right)\) (1)
+ TH1: x = 2 là nghiệm của phương trình (1).
+ TH2: \(x\ne2\). Lấy 2 vế của phương trình (1) chia cho (x - 2), ta được:
(x - 1)\(\sqrt{\frac{x+3}{x-1}}\)=\(\frac{-1}{2}\left(x^2+2x-11\right)\)
Đến đây bạn tự giải tiếp.
Bạn tự tìm điều kiện xác định nhé :)
\(Q=\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)+\left(\sqrt{x}-2\right)^2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\frac{3}{\sqrt{x}+3}:\frac{9-x+x-4\sqrt{x}+4-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{3}{\sqrt{x}+3}:\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{\sqrt{x}-2}=\frac{3}{\sqrt{x}-2}\)
\(\Leftrightarrow\frac{15}{x}-\frac{15}{x+1}=\frac{15}{x\left(x+1\right)}\)(VT)
\(\Rightarrow\frac{15}{x\left(x+1\right)}=0,5\) thay VT sau khi biến đổi vào pt
\(\Leftrightarrow-\frac{15}{\text{x}+1}+\frac{15}{x}-0,5=0\)
\(\Rightarrow-\frac{x^2+x-30}{2x\left(x+1\right)}=0\)
\(\Rightarrow x^2+x-30=0\)
denta:12-(-4(1.30))=121
vì 121>0 =>pt có 2 nghiệm phân biệt
\(\Rightarrow x_{1,2}=\frac{\pm b\sqrt{\Delta}}{2a}=\frac{-1\pm\sqrt{121}}{2}\)
x1=(-1+11):2=5
x2=(-1-11):2=-6
KL:vậy x=5 hoặc -6
k đi mình làm cho